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Lung cancer
Alesha A Thai, Benjamin J Solomon, Lecia V Sequist, Justin F Gainor, Rebecca S Heist

Lung cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-related deaths worldwide 
with an estimated 2 million new cases and 1·76 million deaths per year. Substantial improvements in our 
understanding of disease biology, application of predictive biomarkers, and refinements in treatment have led to 
remarkable progress in the past two decades and transformed outcomes for many patients. This seminar provides an 
overview of advances in the screening, diagnosis, and treatment of non-small-cell lung cancer and small-cell lung 
cancer, with a particular focus on targeted therapies and immune checkpoint inhibitors.

Introduction
With an estimated 2·20 million new cases and 
1·79 million deaths per year, lung cancer is one of the 
most frequently diagnosed cancers and the leading 
cause of cancer-related deaths worldwide.1 Substantial 
improve ments in general understanding of disease 
biology, application of predictive biomarkers, and 
refinements in treatment have led to remarkable progress 
and transformed outcomes for many patients.2 Further-
more, public health measures to reduce smoking rates 
have contributed to reduced incidence of lung cancer and 
improved survival in high-income countries.3–5 Incidence 
of lung cancer is declining twice as fast in men than in 
women, reflecting the historical delay in tobacco uptake 
and cessation by women.5,6 However, new lung cancer 
diagnoses continue to increase in low-income countries, 
where public health initiatives for smoking cessation 
have lagged behind and access to health-care is scarce.3,4,7 
In addition, lung cancer continues to be diagnosed in 
people who have never smoked. This Seminar provides 
an overview of advances in the screening, diagnosis, and 
treatment of non-small-cell lung cancer (NSCLC) and 
small-cell lung cancer (SCLC), with a particular focus on 
targeted therapies and immune checkpoint inhibitors 
(ICIs).

Screening
Implementing screening programmes to diagnose 
patients at an earlier stage is one of the major steps 
needed to decrease lung cancer-related deaths and 
improve survival. Historically, screening studies that used 
chest radiographs, with or without sputum cytology, did 
not show an improvement of patient outcomes.8 However, 
in two randomised controlled trials (RCTs) screening at-
risk individuals with low-dose CT significantly improved 
lung cancer mortality.9,10 In the National Lung Screening 
Trial (NLST),9 roughly 50 000 patients with a high-risk 
history of smoking were randomly assigned to screening 
with annual low-dose CT or chest radiographs over 
3 years. The smaller NELSON study10 randomly assigned 
men who were at high risk of lung cancer (and added a 
smaller population of women later in the study) to low-
dose CT at baseline, followed by four scans during 
a 15 year period or no intervention. Both the NLST 
and NELSON studies showed a clear reduction in lung 
cancer mortality (NLST: hazard ratio [HR] 0·80, p=0·004; 

NELSON: 0·76, p=0·01) and NLST also showed a 
6·7% improvement in overall mortality (p=0·02).

Although the NELSON and NLST studies mainly 
pertain to White men, minority ethnic groups are dis-
proportionately burdened by lung cancer mortality rates 
and are under-represented in studies.11 Similarly, women 
also comprised a minority of the studies’ populations, 
despite evidence that they are more likely to benefit 
from screening than are men.10,12 Furthermore, current 
US screening recommendations primarily use smoking 
history to identify patients who are at high risk. However, 
lung cancer is found across all smoking histories.13 Other 
risk factors, such as exposure to air pollution, are not 
included in screening criteria in general.

Since 2013, lung cancer survival has improved primarily 
due to new treatments rather than screening; however, 
this is due to low uptake of screening despite clear 
evidence that it improves cancer mortality.2 There is hope 
that, as screening is adopted, survival from lung cancer 
will improve as a result, particularly if ongoing trials 
help to personalise and optimise screening intervals on 
the basis of initial scan findings.14 Barriers include 
the stigma associated with smoking and the cost of 
screening.15,16 Coordinated efforts by health-care providers 
and governments are crucial to harness the full potential 
of screening. Other methods for screening are being 
investigated, including circulating tumour DNA (ctDNA), 
analysis of volatile organic com pounds in breath, and 
artificial intelligence enhanced interpretation.

Histology
Lung cancer is a heterogenous disease with wide-ranging 
clinicopathological features.17 Lung cancer is classified 
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Search strategy and selection criteria

We identified references for this Seminar with searches of 
MEDLINE, PubMed, and references from relevant articles with 
the term “lung cancer” in combination with search terms 
“epidemiology”, “screening”, “radiotherapy”, “targeted 
therapies”, “immunotherapy”, and “immune checkpoint”. 
Our search focused on publications in English from 
Jan 1, 2014, to Jan 7, 2020, although seminal papers outside 
this period were included. We have included articles published 
only in the form of abstracts or conference proceedings.
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broadly as NSCLC (85% of total diagnoses) or SCLC 
(15% of total diagnoses). Within NSCLC classifications, 
adenocarcinomas are the most common subtype of 
lung cancer,18 followed by squamous-cell carcinomas 
(figure 1).17 The incidence of squamous-cell carcinomas, 
which was the most common histology, has substantially 
decreased, partly due to reductions in smoking rates 
in high-income countries and changes in cigarette 
composition.20

Biomarker testing
The management of advanced lung cancer was anchored 
in chemotherapy and based on histology. However, 
during the past decade, the discovery of predictive 
biomarkers has created new therapeutic opportunities 
with targeted therapy and immunotherapy (figure 2).

Tumour PD-L1 expression
The expression of PD-L1 on the surface of tumour 
cells, detected by immunohistochemistry, is a predictive 
biomarker used to guide treatment decisions with anti-
PD-1 or anti-PD-L1 antibodies in patients with NSCLC. 
PD-L1 expression is associated with increased likelihood 
of response to PD-1 pathway blockade, but responses to 
ICIs can also be seen in patients with no tumour PD-L1 
expression. This response is probably due to several 

host, tumour, and clinical factors (appendix p 1).21,22 
Furthermore, PD-L1 expression is heterogeneous, both 
intratumorally and intertumorally.23,24

Despite these issues, tumour PD-L1 expression should 
be assessed in all patients with newly diagnosed advanced 
NSCLC as it informs the use of ICIs and identifies 
patients in whom the chemoimmunotherapy approach is 
preferred.

Tumour mutational burden (TMB)
High TMB is predictive of response to ICIs, although 
there is no prospective validation.25 TMB testing is 
currently not recommended for NSCLC and SCLC but 
warrants brief discussion in light of the US Food 
and Drug Administration (FDA) approval of the PD-1 
inhibitor, pembrolizumab, for pretreated patients with 
high TMB (≥10 mutations per megabase) regardless of 
tumour type. Results from a preplanned analysis of ten 
cohorts of roughly 700 patients showed an improved 
overall response in the group that had high TMB (29%, 
95% CI 21–39) compared with the group that did not have 
high TMB (6%, 5–8) for people given pembrolizumab.26 
A higher proportion of patients with high TMB were 
alive at 3 years after the first dose of pembrolizumab than 
those who did not have high TMB (32% vs 22%). TMB 
was an independent predictor of response to single-agent 
ICI. The results of this study do not influence first-line 
treatment of patients with lung cancer, in which ICI 
with or without chemotherapy is established as the 
standard of care. However, TMB might provide additional 
predictive information regarding response to ICI, 
although further research is required to standardise 
testing platforms and clarify thresholds for tumour types.

Molecular testing
Current guidelines (eg, College of American Pathologists, 
International Association for the Study of Lung Cancer, 
and the Association of Molecular Pathology) recommend 
that all patients with newly diagnosed advanced lung 
adenocarcinoma are tested for EGFR mutations; ALK 
and ROS-1 rearrangements; BRAF Val600Glu (BRAFV600E); 
RET rearrangements; and MET exon 14 skipping 
mutations.27,28 However, broader testing, inclusive of other 
targetable alterations, such as NTRK fusions, HER-2 
overexpression, and HER-2 mutations, is recommended 
in light of drug approvals (appendix p 2).28 Historically, 
oncogenic driven NSCLCs were thought to occur in 
patients with adenocarcinoma histology and a never or 
light smoking history;29,30 however, driver mutations can 
be found across all histologies, ages, and smoking 
histories. BRAF-positive,31,32 MET-amplified,33 and KRAS-
positive NSCLCs are found in higher proportion in 
smokers than in non-smokers. Therefore, all patients 
with newly diagnosed metastatic lung adenocarcinoma 
should have broad molecular testing.

Multiplex testing with next-generation sequencing is 
recommended for molecular testing as this process 

Figure 1: Lung cancer histology
Lung cancers are classified into SCLC or NSCLC (A), which are subdivided into 
squamous and non-squamous histology (B). (C) The frequencies of common 
oncogenic driver mutations in NSCLC. Based on a cohort of 4064 patients with 
metastatic NSCLC by Singal and colleagues.19 NSCLC=non-small-cell lung 
cancer. SCLC=small-cell lung cancer.
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abrogates the need for multiple testing when there might 
be little tissue availability.28 Single gene assays for specific 
genetic alterations can be used, but these are often done 
sequentially, which delays time to treatment.

Biology of oncogenic drivers
The discovery of somatic activating mutations in EGFR 
was the first to show that some NSCLCs harbour 
oncogenic driver mutations that confer sensitivity 
to tyrosine-kinase inhibitors (TKIs).34–36 Fundamentally, 
oncogene-driven lung cancers follow common biological 
frameworks. Oncogenic driver alterations: result in 
constitutive activation of kinase signalling pathways that 
normally require ligand-dependent activation (figure 3A);37 
appear to be early clonal events in the evolution of the 
tumour, and are maintained in all subclones that develop 
during tumour progression;38 are typically mutually 
exclusive of other drivers;39,40 and lead to so-called oncogene 
addiction with the cancer cells dependent on the activated 
signalling pathway for survival. These characteristics form 

the basis for directed use of TKIs against these oncogenic 
drivers.

Despite the success of targeted therapies, resistance 
inevitably occurs (figure 3B).41 Acquired resistance can be 
classified into three categories (figure 3C). On-target 
resistance describes alterations in the target gene, which 
can include target gene amplification or second site 
mutations that interfere with drug binding.42–44 Off-
target resistance often occurs through reactivation of 
down stream oncogenic signalling pathways, despite 
ongoing inhibition of the target kinase.42,43,45–47 The third 
category is phenotypic transformation, in which biopsies 
done in patients during disease progression on targeted 
therapies have shown a transformation from NSCLC 
to SCLC.42,43,45,48–50

Liquid biopsies
Tumour samples should be obtained at the time of diag-
nosis and during disease progression when the patient is 
receiving targeted therapies to guide therapeutic decisions. 

Figure 2: Timeline of selected US Food and Drug Administration drug approvals for patients with treatment-naive metastatic NSCLC
Cytotoxic chemotherapy regimens were approved in the 2000s, followed by the rapid approvals of targeted therapies for oncogene driven NSCLC and immune 
checkpoint inhibitors, with or without chemotherapy, on the basis of histology and tumour PD-L1 expression (or both). Historical treatments are those that are still 
used, but are no longer the gold-standard treatment. ICI=immune checkpoint inhibitor. NSCLC=non-small-cell lung cancer. *Received full approval for ALK-positive 
NSCLC in 2013. †Received previous approval for second-line or later treatment. ‡Subsequent full approval in 2017. §Received earlier approval for EGFR Thr790Met-
positive NSCLC. ¶Accelerated approval only. ||Also approved for PD-L1-positive tumour-infiltrating immune cells covering 10% or more tumour area.
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Patients might have only one site of progres sion and tissue 
biopsy might not be technically feasible or could carry 
unacceptable procedural risks; however, detection of 
ctDNA in plasma, otherwise known as liquid biopsies, can 
obtain molecular information if tissue is not available.51

Tumour DNA fragments are shed into the bloodstream 
and can be detected in plasma through identification of 

tumour-specific variant nucleotides.52 The amount of 
detectable ctDNA varies and the sensitivity of detecting 
target mutations with ctDNA is 60–80%, depending 
on tumour location, size, vascularity, and the detection 
method used.53,54 In current practice, detection of EGFR 
mutations with ctDNA, using PCR or next-generation 
sequencing, are the only FDA approved plasma tests. 

Figure 3: Mechanisms of anticancer therapies and evolution of resistance to targeted therapies
(A) Generalised mechanisms of action of cytotoxic agents, TKIs, and immune checkpoint inhibitors are shown. TKIs inhibit the constitutive activation of kinase 
signalling pathways in cancer cells, thereby inducing apoptosis. Immune checkpoint inhibitors are monoclonal antibodies that target CTLA-4, and PD-1 and PD-L1. 
T-cell activation requires antigen presentation by MHC class II molecules on APCs. A second activation signal is required but can be blocked by CTLA-4 binding with 
CD80 or CD86. Anti-CTLA-4 antibodies, such as ipilimumab, inhibit the CTLA-4 binding negative regulatory signal. Another immune checkpoint occurs when PD-1 
receptors, expressed on activated T cells, bind to its ligand, PD-L1, expressed on tumour cells, and promote T-cell apoptosis. Anti-PD-1 and anti-PD-L1 antibodies, 
such as pembrolizumab, inhibit this signal. (B) After response to TKIs, drug resistance inevitably develops. Biopsy at the time of progression can identify the dominant 
mechanism of resistance (C) and guide subsequent therapeutic decisions. Acquired resistance can be classified into three categories: on-target resistance, in which 
alterations in the target receptor tyrosine kinase prevent drug binding; off-target resistance, in which activation of alternative signalling pathways allow for ongoing 
cancer cell proliferation and survival despite ongoing target inhibition; and phenotypic transformation, in which there is acquisition of a new histology and dependence 
on oncogene signalling is generally lost. APC=antigen presenting cell. TK=tyrosine kinase. TKI=tyrosine-kinase inhibitor.
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Assessment of ctDNA is useful for patients whose disease 
has progressed on first-generation or second-generation 
TKIs to detect the EGFRThr790Met (EGFRT790M) mutation. 
ctDNA has also been used to show tumour heterogeneity 
and detect residual disease, but these uses are being 
investigated.55

Staging
Adequate staging is paramount in the investigation of 
patients with lung cancer to select the most appropriate 
therapy. Imaging methods, including fluorodeoxyglucose-
PET (FDG-PET) scans and MRI, are often used to identify 
patients who are not candidates for curative treatment. 
Advances in bronchoscopic and radiological methods 
for tissue biopsy samples are beyond the scope of this 
Seminar but are reviewed in published guidelines.56,57

FDG-PET
FDG-PET is increasingly used with CT for staging 
lung cancer. FDG-PET alone does not provide detailed 
anatomical resolution, but it can depict metabolic 
activity in lesions that are 1 cm or larger. FDG-PET with 
CT is better than CT or FDG-PET alone for the detection 
of involved mediastinal lymph nodes, and has a reported 
sensitivity of 58–94% and specificity of 76–96%.58 One of 
the benefits of FDG-PET is the identification of involved 
mediastinal lymph nodes and occult distant metastases 
in patients who might otherwise have resectable cancer. 
In RCTs, FDG-PET with CT has been shown to prevent 
up to a fifth of patients with lung cancer from having 
unnecessary thoracotomies.59,60 It is important to 
note that the sensitivity of FDG-PET is low for lesions 
that are smaller than 1 cm; mediastinal lymph node 
sampling, by methods such as endobronchial ultrasound 
or mediasti noscopy, might be needed to ensure adequate 
staging.

Early-stage NSCLC
5 year survival for patients with stage I NSCLC is roughly 
80%, and patients with stage II to stage III disease have 
a 5 year survival of 13–60%.61 The standard of care 
for patients with stage I, stage II, and some stage IIIA 
disease is surgical resection. The addition of adjuvant 
chemotherapy in patients with stage II, stage IIIA, or 
selected stage IB disease can improve survival by 5–10%, 
but it is associated with substantial toxicities.62 The 
opportunity for improving survival is pronounced in 
early-stage disease and is driving studies integrating 
targeted therapies and ICIs.

Resectable disease
Surgery
Video-assisted thoracoscopic surgery (VATS) is 
increasingly used as an alternative to open thoracotomy 
for patients having surgery for the management of 
early-stage NSCLC that is resectable. Compared with 
thoracotomy, VATS has shown reduced short-term 

morbidity over the first year in two RCTs,63,64 with similar 
long-term oncological outcomes in a third RCT.65

There has been increasing use of uniportal VATS66 and 
robotic VATS. Uniportal VATS uses a single incision, 
rather than the traditional two to three ports. Studies of 
uniportal VATS are small and from single institutions, 
but they report that uniportal VATS reduce postoperative 
pain, shorten duration of surgery, and shorten duration 
of chest tube drainage when compared with multiportal 
VATS.67–69 Robotic VATS has similar outcomes to 
uniportal and multiportal VATS, but has resulted in 
more surgeons practising and, therefore, more patients 
benefiting from VATS.70,71

Anatomical resection (eg, lobectomy) is the gold 
standard in surgical approach for patients with stage I or 
stage II disease, driven by a single RCT,72 which showed 
an increase in local recurrence in patients receiving 
sublobar resections. In the two decades since this RCT, 
preoperative imaging technology has improved, as have 
intraoperative techniques. Along with the increasing 
incidence of small and partial solid peripheral adeno-
carcinomas, this RCT72 might no longer reflect modern 
practice.73 Extrapolating from more contemporary retro-
spective analyses of patients with T1aN0M0 NSCLC is 
challenging as many patients have sublobar resection 
because they are physiologically unable to tolerate a 
lobectomy, thus have competing risks for increased 
mortality.74–77 There are two ongoing RCTs assessing the 
efficacy of lobectomy versus sublobar resection in patients 
with T1a NSCLC (NCT00499330 and NCT03066297). 
Until the results are published, lobectomy is the gold 
standard in treatment for stage I and stage II NSCLC.

Radiotherapy
Resection is the standard of care for patients with 
stage I NSCLC;72,74 however, if patients are medically 
inoperable, fractionated radiotherapy for 4–6 weeks was 
viewed as an alternative. In the phase 3 CHISEL trial, 
stereotactic ablative body radiotherapy (SABR), in which 
high doses of radiotherapy are given during one to 
five fractions, has been shown to reduce local treatment 
failures for patients with medically inoperable stage I 
NSCLC compared with standard radiotherapy (9 of 
66 [14%] patients had treatment failure vs 11 [31%] of 35, 
HR 0·32, 95% CI 0·13–0·77, p=0·01).78 Improved 
survival was also observed in patients receiving SABR 
compared with standard radiotherapy (5 years vs 3 years, 
0·53, 0·30–0·94). SABR is now the preferred treatment 
method for patients with medically inoperable stage I 
disease. Currently, there are two trials comparing 
surgery with SABR for patients with operable stage I 
disease (NCT02468024 and NCT02984761).

Historically, postoperative radiotherapy was considered 
for completely resected NSCLC with mediastinal nodal 
disease.79–82 Published in 1998, a meta-analysis of nine 
RCTs showed that there is neither harm nor benefit of 
postoperative radiotherapy in patients with mediastinal 
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nodal disease.79 However, radiotherapy and surgical 
techniques have changed substantially since its publica-
tion. The Lung ART study83 showed that postoperative 
radiotherapy does not provide a survival benefit for 
completely resected mediastinal nodal (N2)-positive 
NSCLC. Patients were randomly assigned to standard of 
care with or without postoperative radio therapy. 3 year 
overall survival was 66·5% in the postoperative 
radiotherapy group and 68·5% in the observation group. 
Furthermore, more patients in the postoperative 
radiotherapy group died from cardiopulmonary causes 
than in the observation group (16 [16%] of 99 vs 2 (2%) 
of 102). The increased risk of cardiac toxicity from chest 
radiotherapy has been shown in the RTOG 0617 study,84 
which randomly assigned patients with unresectable 
stage III NSCLC to standard-dose (60 Gy) or high-dose 
(74 Gy) radiotherapy with concurrent chemotherapy. 
Patients receiving high-dose radiotherapy had poorer 
survival than those receiving standard-dose radiotherapy, 
and the higher heart dose was thought to cause this 
increased mortality. On the basis of these data, presented 
at conference proceedings, postoperative radiotherapy is 
not routinely recommended for completely resected 

mediastinal nodal disease; however, final publication of 
the study results are pending.

Neoadjuvant and adjuvant therapy
The use of neoadjuvant ICIs in patients with NSCLC is of 
particular interest as immune activation might be 
potentiated by the presence of neoantigens and intra-
tumoural immune cells within the unresected cancer.85–87 
Neoadjuvant studies also present an oppor tunity for 
earlier assessment of efficacy compared with adjuvant 
studies (figure 4). Survival endpoints, such as overall 
survival, are considered the gold standard, but can take 
more than 10 years to mature.88 Major pathological 
response, defined as less than or equal to 10% of viable 
residual tumour, is associated with a survival benefit 
in neoadjuvant chemotherapy trials and is an attractive 
surrogate endpoint, although, it is not currently recog-
nised from a regulatory perspective and is yet to be 
validated in randomised trials.88–92

Studies have shown that 14–45% of patients had 
major pathological response when given neoadjuvant ICI 
therapy with agents such as atezolizumab, nivolumab, 
and durvalumab.93–96 In a separate early-phase study, about 
35 (80%) of 41 patients receiving neoadjuvant nivolumab 
and chemotherapy had a major pathological response.97 
There are numerous other studies also investigating the 
benefit of adjuvant ICIs.98–106 Although survival outcomes 
are pending for these trials, interim results are promising.

Numerous studies are examining the role of adjuvant 
TKIs in early-stage oncogene-driven NSCLC (eg, EGFR-
positive and ALK-positive NSCLCs).107–109

The ADAURA trial randomly assigned patients with 
resected stage IB–III EGFR-positive NSCLC to osimertinib 
or a placebo for up to 3 years after standard adjuvant 
chemotherapy.110 The trial was unblinded early on the 
basis of the substantial improvements in disease-free 
survival with osimertinib.111,112 Preliminary analyses 
showed a 2 year disease-free survival rate of 89% in the 
osimertinib group, compared with 53% in the placebo 
group (HR 0·21, 95% CI 0·16–0·28), but overall survival 
data are pending.112

Disease-free survival is often used as a surrogate 
endpoint in adjuvant trials, in which overall survival 
data require many years. However, a benefit in disease-
free survival does not necessarily translate into an 
overall survival benefit. This was the case in an adjuvant 
EGFR-positive NSCLC study that randomly assigned 
patients to 24 months of gefitinib or four cycles of 
chemotherapy.111 Therefore, it is not known whether 
adjuvant osimertinib is merely delaying residual disease 
progression. Regardless of this uncertainty, the 
compelling disease-free survival benefit seen with 
adjuvant osimertinib in EGFR-positive NSCLC after 
adjuvant chemotherapy is likely to change clinical 
practice. Currently, there is no evidence that adjuvant 
osimertinib can replace adjuvant chemotherapy in 
patients with resected EGFR-positive NSCLC.

Figure 4: Immunotherapy treatment approaches in NSCLC
(A) Multiple regimens are approved for patients with stage IV NSCLC, on the basis of tumour histology and tumour 
PD-L1 expression. (B) For patients with unresectable stage III NSCLC, standard treatment consists of curative intent 
chemoradiotherapy and then 12 months of adjuvant PD-L1 inhibition. (C) It is hoped that benefit of immune 
checkpoint inhibitors in stage IV and stage III NSCLC can be shifted to earlier stage disease. Approaches being 
investigated include the use of neoadjuvant or adjuvant immune checkpoint inhibitors with or without 
chemotherapy. NSCLC=non-small-cell lung cancer.

A Stage IV NSCLC

C Stage I, II, and III NSCLC

Approved treatment regimens 

Investigational approaches

• PD-1 or PD-L1 inhibitor 
monotherapy 

• PD-1 or PD-L1 inhibitor 
with chemotherapy  

• PD-1 inhibitor 
with CTLA-4 inhibitor 

• PD-1 inhibitor 
with CTLA-4 inhibitor 
with chemotherapy  

B Unresectable stage III NSCLC 

• Chemoradiotherapy with 
adjuvant PD-L1 inhibitor

Neoadjuvant PD-1 or PD-L1 inhibition 
with or without 
chemotherapy 

Adjuvant PD-1 or PD-L1 inhibition 
with or without 
chemotherapy 

Surgery 

Surgery 
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Patients with unresectable stage III NSCLC have poor 
outcomes due to disease relapse.61 Before now, the 
standard of care consisted of definitive chemoradio-
therapy.113,114 The most mature data of ICI therapy in 
stage III disease come from the PACIFIC study.115–117 
Progression-free survival (PFS) was significantly improved 
in patients receiving adjuvant durvalumab for 12 months 
after completion of chemoradiotherapy compared with 
patients receiving placebo (17·2 months vs 5·6 months, 
HR 0·51, 95% CI 0·41–0·63). Overall survival benefit was 
also significant; the 24 month overall survival rate was 
66·3% in the durvalumab group and 55·6% in the placebo 
group.115,116 A post-hoc analysis did not show a survival 
benefit in patients with PD-L1 expression of less than 1% 
on tumour cells, but this was an unplanned analysis of 
only a few patients and robust conclusions regarding 
this subgroup are difficult. Adjuvant durvalumab did not 
lead to an increase in side-effects.115,116 The results from 
this trial represent the largest incre mental improvement 
in survival for patients with stage III unresectable disease 
since chemoradiation and established the role of ICIs for 
patients with unresectable stage III NSCLC (figure 4). 
Studies examining the addition of other checkpoint inhi-
bitors during or after chemo radiotherapy are ongoing.118,119

Metastatic NSCLC
EGFR mutations
EGFR mutations are the most common targetable driver 
mutations found in lung adenocarcinoma. There is 
marked geographical variation in prevalence, ranging 
from 15% in Europe to 62% in Asia.120,121 EGFR exon 19 
deletions and exon 21 Leu858Arg point mutations account 
for about 85% of somatic EGFR alterations and predict 
sensitivity to EGFR TKIs. By contrast, EGFR exon 20 
insertions result in resistance to most EGFR TKIs.122–125

First-generation (eg, gefitinib and erlotinib) and 
second-generation (eg, afatinib and dacomitinib) EGFR 
TKIs have significantly improved PFS, and overall 
survival in the case of dacomitinib, compared with 
platinum-doublet chemotherapy in patients with sen-
sitising EGFR mutations.126–131 Overall survival benefit 
can be difficult to show in studies because nearly all 
studies will allow for crossover at disease progression.

Osimertinib is a third-generation EGFR TKI with activity 
against mutant EGFR and the most common EGFR TKI-
resistance mutation, Thr790Met, found in approximately 
half of patients who have disease progression on earlier 
generation inhibitors.132 Osimertinib has shown superior 
PFS compared with platinum and pemetrexed chemo-
therapy (10·1 months vs 4·4 months, HR 0·30, 95% CI 
0·23–0·41) in patients who progressed on earlier 
generation TKIs and had the EGFRT790M mutation and is 
well tolerated.133–137

Importantly, osimertinib had significant improve-
ments in overall survival and had superior CNS activity, 
compared with erlotinib or gefitinib in patients with 
treatment-naive EGFR-positive NSCLC.136–139 Median 

overall survival was 38·6 months (95% CI 34·5–41·8) for 
the group assigned to osimertinib versus 31·8 months 
(26·6–36·0) for the group assigned to erlotinib or 
gefitinib.134,136,137 In subgroup analyses, no overall survival 
benefit was observed in patients with Asian ethnic origin 
or with exon 21 mutations; however, the study was not 
powered to analyse these subgroups. As such, these 
findings are hypothesis generating only, and osimertinib 
is the preferred first-line treatment for EGFR-positive 
NSCLC (figure 5).

To address the challenges of resistance and improve 
durability of response to EGFR TKIs, combination 
strategies with chemotherapy166,167 and ICIs,168,169 are being 
investigated. Improvement in survival was observed in 
patients in a phase 3 RCT in Japan; the median survival 
of treatment-naive patients receiving chemotherapy plus 
gefitinib was 50·9 months compared with 38·8 months 
for gefitinib alone (HR 0·72, p=0·02).166 Unsurprisingly, 
severe adverse events were more com mon in the 
combination group (65% vs 31%), although the rate of 
treatment discontinuation was similar between groups. 
Similar interim results have also been shown in an RCT 
of gefitinib plus chemotherapy in India.167 However, as 
the most up-to-date studies have resulted in osimertinib 
being the preferred first-line agent, we await the 
results from the combination of chemotherapy and 
osimertinib.170 Some trials are addressing the challenge 
of optimal therapy in patients with osimertinib-resistant 
disease. Lazertinib, a third-generation EGFR TKI, and 
amivantamab, an EGFR-MET antibody, have also shown 
promising activity in early-phase trials when given alone, 
and in combination with each other, for patients who 
either have treatment-naive disease or are resistant to 
osimertinib.171–173

ALK gene rearrangements
ALK gene rearrangements lead to aberrant expression 
of constitutively active ALK fusion proteins and are 
found in 3–5% of patients with NSCLC (ALK-positive 
NSCLC; figure 1).29,174,175 Crizotinib, a first-in-class ALK 
TKI,176,177 was superior to cytotoxic chemotherapy in 
first-line and second-line settings in phase 3 trials, and 
produced unprecedented improvement in median 
overall survival in excess of 4 years as first-line 
therapy.178

CNS-penetrant second-generation ALK-TKIs that are 
more potent than crizotinib and have activity in 
crizotinib-resistant patients have been developed, 
including ceritinib,179 alectinib,143,180 brigatinib,181 and 
ensartinib.182,183 Three of these, alectinib,143,180 brigatinib,145 
and ensartinib,183 are superior to crizotinib as first-line 
therapy with improved median PFS (figure 5). Alectinib 
and brigatinib have received FDA approval for the 
upfront treatment of ALK-positive NSCLC. Investigator 
assessed median PFS is 34·8 months (95% CI 17·7 to not 
reached) for alectinib, and estimated to be 24 months 
(18·5 to not reached) for brigatinib.143,145 An update from 
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Figure 5: Selected US Food 
and Drug Administration 

approved therapies for 
upfront treatment of 

patients with metastatic 
NSCLC

(A) Historically, platinum-
doublet chemotherapy was 
given irrespective of NSCLC 

histology. Subsequent 
cytotoxic regimens were 

identified that benefited the 
treatment of non-squamous 

NSCLC. (B) The discovery of 
somatic oncogenic driver 

mutations in some NSCLC 
tumours and the development 

of targeted therapies led to 
substantial gains in PFS and 

overall survival for these 
patients. The number of 

approved agents for specific 
targets is growing rapidly. 

(C) Chemoimmunotherapy 
regimens have been approved 

for squamous and 
non-squamous NSCLC, 

irrespective of PD-L1 
expression. (D) Single-agent 

immune checkpoint inhibitors 
and dual blockade with 

ipilimumab and nivolumab are 
approved on the basis of 

tumour PD-L1 expression. 
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appendix (pp 3–4). This is a 

select list of US Food and Drug 
Administration approved 

agents only. There are other 
agents and combinations with 

documented activity. 
BRAFV600E=BRAF Val600Glu 
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Peters and colleagues144 reported the 5 year overall 
survival rate was 62·5% in patients receiving alectinib.

Recently, a novel third-generation ALK TKI that can 
pass the blood–brain barrier, lorlatinib, has entered the 
clinic and shown broader activity against ALK-resistance 
mutations than second-generation ALK TKIs, including 
ALK Gly1202Arg, which confers resis tance to crizotinib 
and second-generation inhibitors.184–186 Lorlatinib has also 
been shown to improve PFS compared with crizotinib 
(not reached vs 9·3 months, HR 0·28, 95% CI 0·19–0·41) 
in the phase 3 CROWN study.187 Lorlatinib is well tolerated; 
cognitive effects and peripheral neuropathy are common 
but are generally mild and are effectively managed with 
dose modification and supportive treatment.

Other oncogene driver alterations
ROS1
ROS1 rearrangements are found in roughly 1–2% of 
NSCLCs (figure 1).19 Crizotinib was the first drug with 
clinical activity in ROS1-positive NSCLC. Median PFS 
(in patients with treatment-naive disease or who have 
had chemotherapy) was between 15·9 months and 
19·3 months (figure 5).152,153,188 Additional ROS1 inhibitors, 
such as entrectinib, lorlatinib, and repotrectinib, have 
increased CNS activity and have been evaluated in 
clinical trials.189–194

Entrectinib, an inhibitor of the neurotrophic tropo-
myosin receptor tyrosine kinases (NTRKs), ROS1, and 
ALK, has shown systemic and intracranial activity in 
patients with ROS1-positive NSCLC, with an overall 
response rate of nearly 80% and median PFS of 
19 months (figure 5).151 Crizotinib and entrectinib are 
FDA approved for the treatment of ROS1-positive 
NSCLC. More potent inhibitors than crizotinib and 
entrectinib, such as lorlatinib and repotrectinib, have 
also shown activity and have overcome various resis-
tance mechanisms that develop in patients who have 
crizotinib-resistant ROS1-positive NSCLC.195–198

BRAF
Activating mutations in BRAF are found in roughly 4% of 
NSCLC (figure 1), but only half of these cases involve 
alterations in the Val600Glu residue.31,32,199 Although initial 
trials have shown that there was activity of single-agent 
BRAF inhibitor in patients with BRAFV600E-positive NSCLCs, 
combination therapy with BRAF and MEK inhibition 
resulted in higher response rates (overall response rate 
[ORR] roughly 60%) and longer median PFS (about 
10 months; figure 5).154,200–203 Side-effects observed were 
consistent with previous melanoma studies.202–204

NTRK
NTRK gene fusions can lead to oncogenic fusion proteins 
and are found in about 1% of patients with NSCLC 
(figure 1).205 Two TRK inhibitors, larotrectinib and 
entrectinib, have received accelerated approval by the FDA 
for NTRK-positive solid cancers (figure 5). In phase 1 

and 2 trials with larotrectinib, an ORR of 79% (95% CI 
72–85) with median duration of response of 35·2 months 
(22·8 to not reached)206,207 was observed in patients whose 
tumours harboured NTRK fusions.150,208,209 Entrectinib 
showed an ORR of 57% (43·2–70·8) and median duration 
of response of 10 months (7·1 to not reached).149 The 
efficacy of these drugs in NTRK-positive NSCLC appears 
similar to the overall efficacy across tumour types and was 
independent of fusion partner.210,211 The most common 
serious side-effects observed were elevation in hepatic 
aminotransferases concentrations, fatigue, and cognitive 
impair ment, which were seen in less than 5% of patients 
in either agent.149,212

MET
Oncogenic MET activation in lung cancer can occur with 
MET exon 14 skipping mutations, which reduces the 
degradation of the MET protein (figure 1), or with MET 
gene amplification.33,213,214

Capmatinib and tepotinib, both of which are MET 
inhibitors with intracranial activity, have been granted 
accelerated FDA approval for the treatment of NSCLC 
with MET exon 14 skipping mutations. 155,215 Capmatinib 
has shown an ORR of 68% (95% CI 48–84) and median 
duration of response of 12·6 months (29–53) in patients 
with treatment-naive disease; responses, albeit lower than 
in patients with treatment-naive disease, have also been 
seen in patients with pretreated disease (figure 5). An 
ORR of 44% (29–60) in patients with treatment-naive 
disease was reported for tepotinib and the median 
duration of response, reported for all patients regardless 
of previous therapy, was 11·1 months (7·2 to not reached).216

RET
RET rearrangements are found in 1–2% of lung 
adenocarcinomas (figure 1). New RET TKIs have been 
developed with more activity and less toxicity than 
multitargeted kinase inhibitors, such as cabozantinib. 
A phase 1/2 trial of selpercatinib (LOXO-292), a 
RET-specific TKI, showed an ORR of 64% for patients 
previously given chemotherapy and 85% for patients who 
had not been previously treated. Median PFS was 
16·5 months in the pretreated group and was not reached 
in the treatment-naive group (figure 5).147 The most com-
mon severe side-effects were hypertension and elevated 
concentrations of liver aminotransferases. Selpercatinib 
has received accelerated approval by the FDA. Pralsetinib 
(BLU-667) is another potent and selective RET TKI that 
has been approved by the FDA for patients with metastatic 
RET-positive NSCLC. Pralsetinib has shown an ORR of 
73% in patients with treatment-naive disease and 61% in 
patients who have been previously treated.148,217

Emerging targets
The success of the targeted therapies described in this 
Seminar has led to ongoing efforts to identify and 
therapeutically target other driver mutations. We discuss 
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two emerging targets, HER2 (also known as ERBB2) and 
KRAS, but others, such as NRG rearrangements, are 
being examined.218

HER2
Two antibody drug conjugates, trastuzumab deruxtecan 
and trastuzumab emtansine, have shown activity in 
patients with NSCLC with HER2 mutations. Trastuzumab 
deruxtecan has been granted breakthrough therapy 
designation by the FDA.219–221 Responses were observed 
in 61·9% of patients receiving trastuzumab deruxtecan 
(95% CI 45·6–76·4) with an estimated PFS of 
14 months.219,222 In a trial of trastuzumab emtansine in 
patients that had previously been heavily treated, 
responses were observed in 31% of patients (18–47) with a 
median PFS of 5 months.223 The role of these agents in 
NSCLC with HER2 protein overexpression is being 
investigated.223,224

KRAS
KRAS mutations are found in about 25% of patients 
with lung adenocarcinomas.225 Targeting KRAS muta-
tions is challenging,225,226 but unique properties of the 
KRAS Gly12Cys mutation led to the development of 
novel com pounds AMG510, MRTX849, and other 
KRAS Gly12Cys inhibitors. These agents bind to a 
groove on KRAS Gly12Cys and lock the protein in its 
inactive GDP-bound state, thereby inhibiting dependent 
signalling.227–229 AMG510 and MRTX849 have entered 
early-phase clinical trials, with initial reports indicating 
activity in approxi mately 30–50% of patients.228–230 Novel 
combinations with SHP2 inhibitors, EGFR TKIs, and 
ICIs are also being evaluated.

ICIs
Targeting negative regulators of the immune response, 
known as immune checkpoints, has transformed the 
treatment for many cancers.231–235 Two immune check-
points with known activity in NSCLC are CTLA-4 and the 
PD-1 axis. CTLA-4, typically expressed on CD4-positive 
and CD8-positive T lymphocytes, provides an early inhi-
bitory signal preventing T-cell activation. PD-1, expressed 
on T cells, B cells, and natural killer cells, has a role in 
modulating central and peripheral immune tolerance. 
PD-L1 can be upregulated on tumour cells as a means 
of immune escape by providing a negative immune 
regulatory signal (figure 3A).236

NSCLC was thought to be poorly immunogenic; 
however, anti-PD-1 and anti-PD-L1 antibodies consistently 
showed superior patient survival compared with second-
line chemotherapy,237–240 and have emerged as important 
therapies in patients with treatment-naive NSCLC 
(figure 4).237–240

Single-agent checkpoint inhibitor trials
Study populations of anti-PD-1 and anti-PD-L1 mono-
therapy trials were defined with PD-L1 tumour 

expres sion as a predictive biomarker (figure 5). 
Two agents, pembrolizumab and atezolizumab, are 
approved for upfront treatment of patients with NSCLC 
and PD-L1 expression in greater than or equal to 
50% of tumour cells, and tumour-infiltrating immune 
cells of 10% or more for atezolizumab.162–164,227,241 Median 
overall survival of patients assigned to pembrolizumab 
was superior to those assigned to platinum-doublet 
chemotherapy in a phase 3 RCT that only enrolled 
patients with PD-L1 expression in 50% or more tumour 
cells (26·3 months vs 14·2 months, HR 0·62, 95% CI 
0·48–0·81).162,241

Two trials compared atezolizumab (IMpower110) or 
pembrolizumab (KEYNOTE-042) to chemotherapy in 
patients with 1% or more tumour PD-L1 expression. 
The survival benefit observed in the ICI groups 
was most pronounced in the greater or equal to 
50% subgroup.163,164 In these trials, severe treatment-
related adverse effects were less frequent with immu-
notherapy (13–27% in the immunotherapy group vs 
41–53% in the chemotherapy group).

Cemiplimab, an anti-PD-1 antibody, has also shown 
superior overall survival and PFS in patients with 
metastatic NSCLC with 50% or more PD-L1 tumour 
expression compared with chemotherapy and is in 
priority review by the FDA.242 Two other studies 
investigating first-line nivolumab and durvalumab did 
not show a survival benefit compared with chemotherapy 
for various postulated reasons, including the use of 
different PD-L1 cutoffs and differences in patient 
characteristics between treatment groups.243,244

Chemotherapy and PD-1 or PD-L1 pathway blockade
In contrast to studies of single-agent ICIs, trials of 
chemotherapy with PD-1 and PD-L1 antibodies enrolled 
patients regardless of PD-L1 tumour expression (figure 5). 
In studies of non-squamous NSCLC, the combination of 
PD-1 or PD-L1 antibodies and platinum chemotherapy is 
superior to chemotherapy alone.

Median overall survival was longer in the pembrolizumab 
plus chemotherapy group than in the chemotherapy 
group; in the phase 3 KEYNOTE-189 trial, median survival 
was 22·0 months in the pembrolizumab plus chemo-
therapy group versus 10·7 months in the chemotherapy 
group (HR 0·56, 95% CI 0·45–0·70).156,157,245 Improvements 
in overall survival were seen across all PD-L1 expression 
subgroups, including the subgroup with PD-L1 expres-
sion less than 1%. Combination treatment also resulted 
in a significantly higher response rate of 47·6% 
(42·6–52·5) compared with 18·9% (13·8–25·0) in the 
chemotherapy group. Severe treatment-related adverse 
effects, an initial concern with chemoimmunotherapy, 
were similar in both groups. Both sintilimab, an anti-
PD-1 antibody, and sugemalimab, an anti-PD-L1 antibody, 
combined with chemotherapy have shown superior PFS 
compared with chemotherapy alone in randomised 
phase 3 trials in China.246,247
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The addition of atezolizumab to chemotherapy also 
shows activity in untreated non-squamous NSCLC.159,166,248 
Patients receiving combination therapy of atezolizumab, 
carboplatin, paclitaxel, and bevacizumab (ABCP) had 
better survival than those receiving combination 
therapy of bevacizumab, carboplatin, and paclitaxel 
(BCP; 19·2 months vs 14·7 months, HR 0·78, 95% CI 
0·64–0·96).248 Of patients receiving ABCP, 56% had 
severe treatment-related adverse effects, com pared 
with 48% in the BCP group.248 In another study, 
IMpower130, the addition of atezolizumab to carboplatin 
and nab-paclitaxel also improved overall survival 
compared with chemotherapy alone (18·6 months vs 
13·9 months, HR 0·79);159 however, atezolizumab with 
carboplatin (or cisplatin) and pemetrexed for patients 
with non-squamous NSCLC improved PFS but did not 
show an overall survival benefit.249 Nivolumab plus 
chemotherapy was not better than chemotherapy alone 
in patients with NSCLC regardless of PD-L1 expression.250

Chemotherapy plus pembrolizumab, ABCP, and 
carboplatin with nab-paclitaxel and atezolizumab have 
received FDA approval for the first-line treatment of 
patients with non-squamous NSCLC with no EGFR or 
ALK alterations (figure 5).

For patients with squamous histology, KEYNOTE-407 
has shown improved response and survival in 
patients receiving treatment with chemotherapy 
(carboplatin with either paclitaxel or nab-paclitaxel) and 
pembrolizumab compared with chemotherapy alone.160 
In the chemo immunotherapy group, the response rate 
was 57·9% (95% CI 51·9–63·8) and the median overall 
survival was 15·9 months (13·2 to not reached) 
compared with 38·4% (32·7–44·4) and 11·3 months 
(9·5–14·8) in the chemo therapy only group (figure 5). 
In the IMpower131 study, the addition of atezolizumab 
with chemotherapy did not improve overall survival 
compared with chemotherapy only in patients with 
squamous NSCLC.160

It is unclear whether patients with oncogene-driven 
lung cancer respond to immunotherapy. In IMpower150, 
a potential survival benefit was seen in patients with 
sensitising EGFR mutations receiving ABCP when 
compared with BCP,158 but this subgroup was small and a 
separate trial of atezolizumab with carboplatin and 
nab-paclitaxel did not show a survival benefit for patients 
with EGFR-positive NSCLC.159 Furthermore, retrospective 
analyses have shown that single-agent anti-PD-1 and 
anti-PDL1 antibodies are largely ineffective for patients 
with oncogene driven NSCLC.251,252

ICI combinations
In metastatic melanoma, combinations of anti-CTLA4 
and anti-PD1 or anti-PD-L1 antibodies improve overall 
response and survival compared with monotherapy.253–255 
The trial compared nivolumab plus ipilimumab to 
chemotherapy in patients with untreated NSCLC.165,256 
Combination therapy improved the survival of patients 

regardless of tumour PD-L1 expression (PD-L1 <1%: 
overall survival 17·2 months vs 12·2 months, HR 0·62, 
95% CI 0·48–0·79; PD-L1 ≥1%: 17·1 months vs 
14·9 months, 0·79, 0·65–0·96).165 Ipilimumab with 
nivolumab has been FDA approved for upfront treatment 
of patients with metastatic NSCLC with 1% tumour 
PD-L1 expression or more (figure 5). Approval did not 
extend to the less than 1% PD-L1 expression subgroup as 
it was an exploratory endpoint. Severe treatment-related 
adverse events were similar between the two groups but 
toxicities leading to discontinuation were higher in the 
ICI group (18·1% vs 9·1%).

In Checkmate 227, a subset of patients had rapid 
progression. To mitigate these events, Checkmate 9LA 
explored combining nivolumab and ipilimumab with 
two cycles of platinum-doublet chemotherapy. This 
combination was better than chemotherapy, regardless 
of tumour PD-L1 expression (PD-L1 <1%: HR 0·62, 
95% CI 0·45–0·85; PD-L1 ≥1%: 0·64, 0·50–0·82). As 
expected, severe treatment-related adverse events were 
higher in the combination group compared with the 
chemotherapy only group (47 vs 38%).161 The FDA has 
approved the combination of ipilimumab and nivolumab 
with two cycles of chemotherapy for patients with 
NSCLC (figure 5). By contrast, durvalumab with 
tremelimumab did not improve PFS or overall survival 
compared with chemotherapy alone in the MYSTIC 
trial.244 No survival benefit was shown in a separate study 
of durvalumab and tremelimumab plus chemotherapy 
versus durvalumab and tremelimumab.257

In aggregate, these data show that ICIs are important in 
the initial management of metastatic NSCLC. Currently, 
in patients with tumours expressing 50% PD-L1 or more, 
pembrolizumab or atezolizumab monotherapy, chemo-
immunotherapy, or dual immune checkpoint blockade 
with or without chemotherapy can be used. Based on 
available data, one common approach is to use single-
agent PD-1 or PD-L1 pathway blockade in patients without 
rapidly progressive or symptomatic disease.

For patients with tumours expressing less than 
50% PD-L1, chemotherapy plus PD-1 or PD-L1 blockade 
is the standard approach. Despite approval for 
pembrolizumab monotherapy, it is seldom used as the 
benefit is mostly observed in patients with 50% tumour 
or more PD-L1 expression. Nivolumab and ipilimumab 
with chemo therapy is also approved for patients 
regardless of PD-L1 expression, and nivolumab plus 
ipilimumab is also available for patients with tumour 
PD-L1 of 1% or more.

Immune-mediated toxicities
Unique toxicities associated with ICI therapy arise from 
immunological enhancement and can occur at any point 
during or after treatment, which is an important 
consideration as ICIs can be given for up to 2 years. The 
incidence of serious immune-related adverse events is 
3–6% in patients with NSCLC receiving PD-1 and PD-L1 
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inhibition258 and it increases with ICI combination 
approaches.259 If managed appropriately, immune-related 
adverse events are usually transient but, in rare cases, 
they can be life threatening.

Immunosuppression, typically with local or systemic 
corticosteroids, and ICI cessation, is the mainstay 
treatment of moderate to severe immune-related adverse 
events.260,261 Guidelines for the diagnosis and management 
of immune-related adverse events have been developed 
by the American Society of Clinical Oncology, the 
European Society for Medical Oncology, and the Society 
for Immunotherapy of Cancer.260–262

Duration of therapy
The optimal duration of anti-PD-1 and PD-L1 antibody 
therapy is yet to be defined. Results from an exploratory 
endpoint in the Checkmate 153 trial show that overall 
survival is longer in patients with stable or responding 
disease who continue nivolumab compared with patients 
who stopped at 12 months (not reached vs 32·5 months, 
HR 0·61, 95% CI 0·37–0·99).263 The results of the study 
are informative, but the analysis was an exploratory 
endpoint only. Outcomes from two earlier trials showed 
excellent survival in patients who completed 24 months 
of nivolumab and pembrolizumab.264,265 Only some 
patients progressed on cessation and most responded to 
treat ment upon rechallenge. Therefore, current data 
supports ICI treatment for at least 2 years for patients 
who maintain disease stability or response on therapy.

SCLC
SCLC is characterised by its rapid growth, tendency to 
metastasize, and poor survival rates. SCLC is staged as 
limited-stage SCLC, in which disease is contained within 
the hemithorax and considered curable, and extensive-
stage SCLC, in which disease extends beyond the 
hemithorax and is usually managed with chemoimmuno-
therapy with or without consolidative radiation.266,267 
Limited-stage SCLC is managed with chemoradiotherapy 
and then prophylactic cranial irra diation. In a study by 
Peters and colleagues,268 the addition of nivolumab with 
ipilimumab as consolidation therapy did not improve 
PFS compared with observation in patients with limited-
stage SCLC who completed chemoradiotherapy and 
prophylactic cranial irradiation. There are several other 
studies assessing the efficacy of chemoradiotherapy with 
or without consolidative ICI.269,270

The first-line management of extensive-stage SCLC has 
been platinum with etoposide; however, ICIs have altered 
the treatment for this disease.271–273 Three studies have 
examined the benefit of the addition of an anti-PD-1 or 
anti-PD-L1 antibody to platinum and etoposide treatment 
for extensive-stage SCLC.274–278 Of these treatments, the 
addition of atezolizumab or durvalumab to chemotherapy 
resulted in superior overall survival compared with 
platinum and etoposide treatment. Overall survival of 
pembrolizumab plus platinum and etoposide did not 

reach the prespecified significance threshold compared 
with chemotherapy alone.278

IMpower133 randomly assigned patients with 
untreated extensive-stage SCLC to four cycles of platinum 
and etoposide with or without atezolizumab, and the 
CASPIAN study randomly assigned patients to platinum 
and etoposide with or without durvalumab. Patients con-
tinued on maintenance ICI or placebo until progressive 
disease. In the IMpower133 study, the median overall 
survival was 12·3 months in the atezolizumab group and 
10·3 months in the placebo group (HR 0·76, 95% CI 
0·60–0·95; p=0·0154).279 Similar improvements in overall 
survival were seen in the CASPIAN study. Rates of 
grade 3 or worse toxicities were equivalent in both 
groups. The addition of atezolizumab or durvalumab to 
platinum and etoposide has been approved by the 
FDA.276,277 PD-L1 is not a predictive biomarker of response 
to ICIs in SCLC.275,280

In the second-line setting, topotecan has been the only 
FDA approved agent.281–283 In a phase 3 RCT, nivolumab 
was not shown to be better than topotecan.285 Lurbinectedin 
has shown activity in the second-line setting in a phase 2 
study, and has received accelerated approval by the FDA; 
however, lurbinectedin with doxorubicin did not show a 
survival benefit compared with standard second-line 
chemotherapy in a phase 3 study.285,286 Poly (ADP-ribose) 
polymerase inhibitors with chemotherapy have also 
shown promising activity in early-phase studies of 
relapsed SCLC.287–289 Although there is clearly a need to 
improve the outcomes of patients with SCLC, the study 
results, particularly with ICIs, have made great steps in 
the right direction.

Conclusions
The past decade in lung cancer research has been 
characterised by a greater understanding of cancer 
biology, acceleration in drug development, and applica-
tion of therapies to early-stage disease. The substantial 
improve ments in survival in the studies discussed in 
this Seminar, importantly, translate into improved 
survival in the clinical setting. However, there are 
ongoing challenges. Smoking rates are high and the 
introduction of electronic cigarettes is problematic; the 
relationship of electronic cigarettes with lung cancer is 
unclear but there is concern over their popularity and 
the renormalisation of smoking behaviour. Furthermore, 
many agents described in this Seminar are not affordable 
in most parts of the world. The cost of drugs poses 
substantial challenges for individuals and health-care 
systems and, as a result, equitable access to drugs vary 
among countries. Despite these challenges, the outlook 
for patients is improving.
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