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ABSTRACT

Coronary artery disease is a leading cause of morbidity and mortality worldwide. Noninvasive imaging

tests play a significant role in diagnosing coronary artery disease, as well as risk stratification and guidance

for revascularization. Myocardial perfusion imaging, including single photon emission computed tomogra-

phy and positron emission tomography, has been widely employed. In this review, we will review test

accuracy and clinical significance of these methods for diagnosing and managing coronary artery disease.

We will further discuss the comparative usefulness of other noninvasive tests—stress echocardiography,

coronary computed tomography angiography, and cardiac magnetic resonance imaging—in the evaluation

of ischemia and myocardial viability.
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INTRODUCTION
Coronary artery disease is a leading cause of mortality and

morbidity worldwide.1 Although coronary angiography

remains the “gold standard” for diagnosing the presence

and severity of coronary artery disease, various noninvasive

imaging tests offer high sensitivity and specificity for diag-

nosis and risk stratification and provide guidance for revas-

cularization. In this article, we will 1) review the clinical

usefulness of myocardial perfusion imaging, single

photon emission computed tomography and positron

emission tomography, for the evaluation of coronary artery

disease and myocardial viability; 2) compare the scinti-

graphic methods to other noninvasive tests, including

stress echocardiography, coronary computed tomography
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angiography, and cardiac magnetic resonance imaging; and

3) demonstrate the role of imaging in evaluating myocardial

viability.
MYOCARDIAL PERFUSION IMAGING

General Principles
Myocardial perfusion imaging reflects relative differences

in the distribution of blood flow in the myocardium at rest

and during stress, which may be produced by exercise or by

pharmacological means. Myocardial arterioles distal to a

significant epicardial coronary stenosis are dilated by auto-

regulation to maintain myocardial blood flow at rest. Stress

conditions cause significant vasodilation of normal vascular

beds, but little additional dilation in vascular beds distal to

significant coronary stenoses, leading to differences in per-

fusion, appearing as “defects” in myocardial perfusion

images. This original method has been supplemented by

images that demonstrate ventricular function.

Standard displays of the poststress and rest images

are demonstrated and compared in transverse (short axis),

vertical long axis and horizontal long axis (Figure 1A).
article under the CC BY-NC-ND license
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Perfusion defects are described by a standardized 17-seg-

ment model of the left ventricle (Figure 1B). An irreversible

(fixed) defect (ie, seen on both at rest and stress images)

indicates infarction, whereas a perfusion defect seen after

stress but reversible (not seen) on resting images indicates

myocardial ischemia (Figure 1B). Figure 1C demonstrates

correlative angiographic findings.
CLINICAL SIGNIFICANCE

� Single photon emission computed
tomography has extensive prognostic
data for coronary artery disease.

� Positron emission tomography offers
higher accuracy over conventional
scintigraphy.

� Scintigraphic imaging demonstrates
physiological significance while coro-
nary computed tomography primarily
detects anatomic stenosis.

� Myocardial viability tests reveal the
likelihood of functional improvement
Exercise is the preferred stress

method because it provides valu-

able prognostic information.2 Phar-

macological stress is indicated for

1) patients who are unable to

achieve adequate exercise3 and 2)

patients with left bundle branch

block or ventricular pacing, which

often show relative septal hypoper-

fusion accentuated by exercise and

can be mistakenly interpreted as

ischemia.4 Pharmacological stress

tests (regadenoson is most com-

monly used at present) have similar

sensitivity and specificity compared

to exercise stress testing.5
following revascularization.
� The choice of the best test depends on
facility resources and individual
patient characteristics.
Pitfalls in Study
Interpretation
First, myocardial perfusion imaging

may underestimate the presence of

3-vessel or left main disease due to
“balanced perfusion defects” during stress.6,7 The addi-

tional findings of transient ischemic left ventricular dilata-

tion and reduced left ventricular ejection fraction during

stress improve the diagnostic sensitivity in these scenar-

ios.6,7 Second, disorders other than epicardial coronary dis-

ease may produce false-positive findings in patients with

nonischemic, dilated cardiomyopathy.8,9 Importantly, coro-

nary microvascular disease10 can be associated with perfu-

sion abnormalities. Third, attenuation artifact from the soft

tissue can affect study accuracy, although the effect can be

reduced by attenuation correction software. Attenuation

from an elevated diaphragm can cause an apparent inferior

defect, whereas persistent breast attenuation may simulate

anterior infarction.11,12 Lateral wall defects may be

observed in women and patients who are obese.12
Single Photon Emission Computed Tomography
for Diagnosis and Prognosis in Coronary Artery
Disease
99mTc-based radiopharmaceuticals have largely replaced
201Tl because of improved dosimetry, better spatial imaging

resolution, and less soft-tissue attenuation,11 leading to

greater test accuracy.13 The sensitivity and specificity of
99mTc perfusion imaging are reported 68%-74% and 71%-

79%, respectively14,15 (Table 1). In studies of good quality,

the sensitivity and specificity of visually assessed exercise
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stress 99mTc imaging are 73%-96% and 70%-89%,

respectively.5

Decades of experience with single photon scintigraphy

has contributed to abundant data, demonstrating its prog-

nostic role. In a study of 5183 patients, the annual risks of

cardiac death and myocardial infarction were 0.3% and

0.5%, respectively, in 2946 patients with normal perfusion
 of Health and Social Security de
zación. Copyright ©2021. Elsevie
images, in contrast to 6% and 9.8%,

respectively, in 2237 patients with

abnormal images.19 In patients with

known coronary artery disease, the

physiological information obtained

by myocardial perfusion imaging

improves risk stratification beyond

the anatomical information of coro-

nary angiography.16
Positron Emission
Tomography for Diagnosis of
Coronary Artery Disease
These images are of better quality

than single photon computed tomo-

graphic images due to better resolu-

tion and attenuation correction,17

leading to a greater accuracy in

localizing disease to individual cor-

onary arteries.20 Importantly, posi-

tron emission tomography can

quantify myocardial blood flow and
myocardial flow reserve, which significantly enhances the

diagnosis of coronary artery disease.20 The sensitivity and

specificity of positron emission imaging was reported 84%

and 87%, respectively, in a meta-analysis15 (Table 1).
Other Methods for Diagnosis of Coronary Artery
Disease
Coronary computed tomography angiography, stress echo-

cardiography, and cardiac magnetic resonance imaging are

all useful for the diagnosis of coronary artery disease.

Table 1 displays the results of selected, high-quality meta-

analyses. The most significant advantages and disadvan-

tages, plus sensitivity and specificity of these methods, are

summarized.

Coronary Computed Tomography Angiography. The

main advantage of coronary tomography angiography is the

anatomical detection of coronary lesions with high sensitiv-

ity. On the other hand, its specificity is relatively low,

largely due to blooming effects from heavy coronary

calcification.14,15,21 Therefore, this method has been more

commonly used in younger patients with low to intermedi-

ate risk. Recent techniques, including stress perfusion and

calculated coronary fractional flow reserve, increase the

overall test specificity to 87% and 85%, respectively,22,23

compared to 54% by computed tomography angiography
 ClinicalKey.es por Elsevier en agosto 09, 
r Inc. Todos los derechos reservados.



Figure 1 An example of myocardial perfusion imaging in correlation with coronary angiogram. (A) Perfusion scan

showing anterior and septal ischemia. (B) A 17-segment model corresponding to perfusion imaging. (Severity denoted

by numbers and colors.) Moderate-severe reduction of activity on poststress image, mostly reversible on rest image is

consistent with ischemia. Mild reduction in activity at rest is due to prior nontransmural infarction. Poststress attenua-

tion corrected image demonstrates that apparent inferior defect on poststress image is largely due to diaphragmatic

attenuation. (C) Coronary angiogram demonstrates: 1) Focal 95% stenosis of proximal left anterior descending artery

(arrowhead); 2) insignificant lesion of right coronary artery that sends collateral vessels to LAD (arrows); 3) widely

patent anterior descending artery following stent placement. AC = attenuation correction; ANT = anterior;

HLA = horizontal long axis; INF = inferior; LAT = lateral; SA = short axis; SEP = septal; VLA = vertical long axis.
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Table 1 Comparison of Noninvasive Tests (at Patient Level) for Diagnosing Coronary Artery Disease

Test Sensitivity Specificity Advantages Disadvantages

SPECT 0.68-0.7416,17 0.71-0.7916,17 1) Inexpensive, and widely available
2) Associated with prognosis

1) Radiation exposure
2) Higher false-negativity for

multivessel disease
3) Higher false-positivity due to

attenuation

PET 0.8417 0.8717 1) Greater accuracy than SPECT
2) Improved diagnosis of multivessel

disease
3) Anatomical information
4) Associated with prognosis

1) Limited by availability and
expertise of facility

2) Radiation exposure

Stress echo 0.39-0.7716,17 0.75-0.9316,17 1) No radiation or contrast exposure
2) Structural information
3) Higher specificity in female and

obese patients

1) Dependence on technical and
imaging quality as well as reader
experience

2) Lower sensitivity for diagnosing
single vessel coronary artery
disease

Coronary CT
angiogram

0.90-0.9416,18

CTP28: 0.83
FFTCT

28: 0.89

0.39-0.4816,18

CTP28: 0.79
FFRCT

28: 0.76

1) Anatomical details including
plaque characteristics

2) High sensitivity; also detects
atherosclerosis without critical
stenosis

1) Radiation & contrast exposure
2) Relatively low specificity improved

with CT-FFRCT or CTP
3) Affected by calcium-related

artifacts

Cardiac MRI 0.89-0.9016,17 0.87-0.9416,17 1) High sensitivity and specificity
2) Detailed structural information

1) Expensive and not universally
available

2) Contraindicated in advanced
renal disease

3) Affected by arrhythmia, tachycardia
and breath-holding skills

CT = computed tomography; CTP = (coronary) computed tomography perfusion; FFR = (coronary) fractional flow reserve; MRI = magnetic resonance imag-

ing; PET = positron emission tomography; SPECT = single photon emission computed tomography.

The sensitivity and specificity data are obtained from multiple meta-analyses (see reference), with invasive serving as gold standard. The analyses were

performed at patient level to determine the test accuracy in ischemia detection, without localization to a specific vessel.

Li and Kronenberg Myocardial Perfusion and Viability Imaging in Coronary Artery Disease 971
alone22 (Table 1). The coronary fractional flow reserve by

computed tomography angiography has better performance

than positron emission imaging in identifying vessel-spe-

cific lesions;24 but on a per-patient level, the specificity is

lower.24

The current North American guidelines favor noninva-

sive functional imaging over coronary computed tomogra-

phy angiography as a first-line diagnostic tool for most

patients with suspected myocardial ischemia.25 However,

the 2016 guideline from the National Institute for Health

and Care Excellence (NICE) in the United Kingdom favors

coronary computed tomography angiography as the first

test in patients without known coronary artery disease.26 A

meta-analysis of randomized clinical trials comparing coro-

nary computed tomography angiography to other imaging

methods showed that former was associated with a lower

incidence of subsequent myocardial infarction.27 This may

be due to detection of nonobstructive disease that prompted
Descargado para BINASSS Circulaci (binas@ns.binasss.sa.cr) en National Library
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more aggressive medical therapy and increased referral for

angiography and revascularization.27 The disadvantages of

computed tomography angiography include radiation and

contrast exposure, the lack of physiological exercise data,

and greater expense than myocardial perfusion imaging.

This process can increase the number of subsequent cardiac

catheterizations28 and the “downstream costs.”18

This controversy will continue, with more results to fol-

low. The overarching issue will be deciding the best strat-

egy for treating stable coronary artery disease as outlined in

recent publications from the International Study of Compar-

ative Health Effectiveness With Medical and Invasive

Approaches (ISCHEMIA) trial.29,30 This controversy high-

lights the evolution in the choice of diagnostic test from

aiming at the “best accuracy” to the “best outcome.”

Stress Echocardiography. Similar to perfusion scanning,

stress echocardiography, either with exercise or dobutamine
 of Health and Social Security de ClinicalKey.es por Elsevier en agosto 09, 
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stimulation, is commonly employed for evaluating myocar-

dial ischemia by producing ischemic wall motion abnormal-

ities.31 The sensitivity of stress echocardiography is lower

than 99mTc perfusion imaging, but specificity is greater.14,15

This is likely owing to a greater extent of ischemia needed

to produce a wall motion abnormality than needed to pro-

duce a perfusion abnormality.14,15 On the other hand, stress

echocardiography has greater specificity than 99mTc perfu-

sion imaging in females and patients with left ventricular

hypertrophy.32

Stress Cardiac Magnetic Resonance Imaging. Magnetic

resonance imaging may employ pharmacological vasodi-

lation or dobutamine, each with similar sensitivity and

specificity for diagnosing coronary artery disease.33,34

The sensitivity and specificity of stress cardiac magnetic

resonance imaging with myocardial perfusion are 89%-

90% and 87%-94%, respectively, in meta-analyses.14,15

Dobutamine is more often employed when gadolinium is

contraindicated. In randomized trials, the sensitivity of

stress magnetic resonance imaging was greater than per-

fusion imaging, but the specificity of perfusion imaging

was greater.35-38 There are several important limitations

of cardiac magnetic resonance imaging, including a lack

of information about exercise capacity, contraindication

in patients with incompatible cardiovascular implantable

electronic devices, relatively limited availability of devi-

ces, and imaging expertise compared to other methods.

Limitations of Analyses. Myocardial ischemia may be due

to both epicardial obstructive coronary artery disease and

microvascular dysfunction.10 All tests that are based on

physiology demonstrate the summed effects of macrovascu-

lar and microvascular causes of ischemia. Thus, they are

valuable in this regard but also will not solely reflect epicar-

dial coronary artery disease.

The extensive literature regarding sensitivity, specificity,

and other measures of test validity is subject to potential

errors.39,40 In addition, the field of analyzing the value of a

specific test is evolving toward outcomes evaluation, rather

than simply establishing a diagnosis of coronary artery

disease. Here, we will discuss the value of scintigraphic

imaging and other imaging modalities in predicting

revascularization outcomes for patients with ischemic

cardiomyopathy.
Table 2 Comparison of Myocardial Viability Tests for Predicting Recove

Test Studies (N) Patients (N) Sen

201Tl SPECT 40 1119 87
99mTc SPECT 25 721 83
PET 24 756 92
DSE 41 1421 80
Dobutamine CMR 9 272 74
CMR with gadolinium 5 178 84

CMR = cardiac magnetic resonance; DSE = dobutamine stress echocardiograph

PPV = positive predictive value; SPECT = single photon emission computed tomog

Data are summarized from the meta-analysis by Schinkel et al.50

Descargado para BINASSS Circulaci (binas@ns.binasss.sa.cr) en National Library
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EVALUATION OF MYOCARDIAL VIABILITY
Myocardial stunning and hibernation were defined in 1970s

and 1980s. “Myocardial stunning” is the condition of myo-

cardial contractile dysfunction after brief ischemia followed

by the relief of ischemia, without irreversible tissue dam-

age.41 In contrast, “myocardial hibernation” refers to the

condition of chronic contractile dysfunction in the setting

of persistent hypoperfusion, with the potential for improved

contractility after revascularization.42,43 Both stunned and

hibernating myocardium are considered viable.

Revascularization in patients with ischemic cardiomyop-

athy can reduce long-term mortality.44-46 However, cardiac

performance improves in some but, not all, patients.47

Selection of the patients with ischemic and viable myocar-

dium who will benefit from revascularization has been the

goal of myocardial viability studies. Hibernating or

stunned myocardium can be detected by multiple imaging

modalities, including scintigraphic imaging, dobutamine

stress echocardiography, and cardiac magnetic resonance

imaging.

Single Photon Emission Computed Tomography
Both 201Tl and 99mTc-based imaging has been studied, but
201Tl has been more commonly employed for detecting

hibernating myocardium.48 Bonow et al48 showed generally

good correlation for detecting viable myocardium between
201Tl imaging and 18F-flurodeoxyglucose positron emission

tomography imaging. However, with severe, irreversible
201Tl defects, positron imaging was superior.48
Positron Emission Tomography for Assessing
Myocardial Viability
Metabolic imaging with 18F-fluorodeoxyglucose reflects

myocardial glucose uptake, consistent with viability and

has the highest sensitivity among the viability tests49

(Table 2). A comprehensive meta-analysis of pooled stud-

ies49 showed a sensitivity and specificity in predicting seg-

mental wall motion improvement after revascularization of

87% and 54% by 201TI-based protocols and 92% and 63%

for 18F-fluorodeoxyglucose positron emission tomogra-

phy49 (Table 2). It is preferred in facilities with this technol-

ogy and experience.

Four principal patterns of perfusion and metabolism may

be observed on perfusion and metabolism images51
ry of Contractility Following Coronary Revascularization50

sitivity (%) Specificity (%) PPV (%) NPV (%)

54 67 79
65 74 76
63 74 87
78 75 83
82 78 78
63 72 78

y; NPV = negative predictive value; PET = positron emission tomography;

raphy.
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Figure 2 Patterns of myocardial viability on positron

emission tomographic images.
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(Figure 2). 1) Normal perfusion and metabolism suggest

normal myocardium or ischemic stunning in the setting of

reduced contractility; 2) reduced perfusion with preserved

metabolism (perfusion-metabolism mismatch) suggests

hibernating myocardium; 3) the combination of reduced

perfusion and metabolism (matched defects) indicates non-

viable, infarcted myocardium; and 4) rarely, a “reverse mis-

match pattern” is found where normal perfusion coexists

with reduced metabolism. This has been observed early

after revascularization52 and reflects a shift of metabolic

substrate to free fatty acids.53 Other rare instances have

also been reported.50,54
Other Methods: Dobutamine Stress
Echocardiography and Cardiac Magnetic
Resonance Imaging
Dobutamine stress echocardiography and dobutamine stress

cardiac magnetic resonance imaging examine myocardial

contractile reserve. An improvement of wall motion in

hypokinetic/akinetic regions with low-dose dobutamine fol-

lowed by deterioration with higher-dose dobutamine signi-

fies hibernating myocardium. These tests predict functional

recovery after revascularization with higher specificity than

nuclear viability tests but lower sensitivity.49,55

Magnetic resonance imaging with gadolinium assesses

the extent of infarction. Segments with significant wall thin-

ning (<6 mm) and ≥50% transmural scar have a low likeli-

hood of improvement after revascularization and are

considered nonviable.49,56 A sensitivity and specificity of

84% and 63%, respectively, was reported for this method49

(Table 2).
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Clinical Value of Viability Tests
A large body of observational nonrandomized studies sug-

gested the value of myocardial viability tests for estimating

the prognosis of patients with ischemic cardiomyopathy

treated with revascularization compared to medical

therapy.47,57,58 Here we will discuss 2 important studies

that call into question the benefit of myocardial viability

tests and the caveats within.

A landmark trial to study the clinical impact of viability

tests was the PET And Recovery following Revasculariza-

tion 2 (PARR-2) study, which randomized 430 patients

with ischemic cardiomyopathy into a positron emission

tomography guided-therapy group and a standard care

group. Overall, there was no difference in the cardiac out-

come at 1 year.59 However, recommendations from the

radionuclide study were not followed in 25.7% of the

patients in the imaging-guided arm.59 A post hoc analysis

(Ottawa-FIVE) included the subset of 111 patients enrolled

at the University of Ottawa Heart Institute, in which the

imaging guidance was followed. This analysis showed a

significant reduction of composite cardiac events in the

imaging-guided arm (hazard ratio [HR] = 0.37, P = .009).60

This study remains the only randomized study to date that

has used positron emission tomography to guide revascular-

ization strategy.

The Surgical Treatment for Ischemic Heart Failure

(STICH) Trial tested the survival benefit of coronary artery

bypass grafting for patients with ischemic cardiomyopa-

thy.61 A total of 601 patients from the 1212 patients

enrolled in the trial underwent single photon myocardial

perfusion imaging or dobutamine stress echocardiography

to test for myocardial viability after randomization. Surgi-

cal revascularization plus medical therapy offered a sur-

vival benefit over medical therapy alone, but the

myocardial viability results had no significant impact on

the benefit of revascularization.62 This study has met criti-

cism for several reasons.63,64 The STICH viability study

was observational and potentially affected by selection bias

because viability imaging was nonrandomized and per-

formed in only half of the 1212 enrollees. Further, because

81% of patients had positive viability tests, the study was

judged to be underpowered to address the importance of

viability testing.63 Finally, the methods for assessing viabil-

ity did not include positron emission tomography or mag-

netic resonance imaging, which are more sensitive

methods. Recent but nonrandomized studies using positron

emission tomography have lent support to the concept of

testing ischemia and viability in ischemic cardiomyopa-

thy.58,65 Thus, the weight of evidence supports the value of

viability testing for defining the likelihood of major adverse

cardiac events and functional recovery following revascu-

larization in ischemic cardiomyopathy.
CONCLUSION
Scintigraphic methods play pivotal roles in the clinical

diagnosis and management of coronary artery disease.
 of Health and Social Security de ClinicalKey.es por Elsevier en agosto 09, 
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99mTc-based myocardial perfusion imaging is widely avail-

able and has ample data for judging prognosis, whereas pos-

itron emission imaging offers greater accuracy for

diagnosing coronary artery disease and myocardial viabil-

ity. Scintigraphic methods and others, such as stress echo-

cardiography, cardiac computed tomography angiography,

and cardiac magnetic resonance imaging, have different

profiles of advantages and disadvantages. The choice of a

specific diagnostic test should be tailored to the individual

patient as well as facility resources. The field of test inter-

pretation has evolved from simply detecting the presence of

obstructive coronary artery disease to the evaluation of

patient outcomes. Illustrating this are 2 issues: 1) the selec-

tion between functional stress testing versus anatomic defi-

nition (using coronary computed tomography angiography)

for the diagnosis of coronary artery disease and 2) the use

of myocardial viability testing in predicting outcomes fol-

lowing revascularization.
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