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A B S T R A C T   

Osteoporotic fractures, prevalent in the elderly, pose a significant health and economic burden. Current methods 
for predicting fracture risk, primarily relying on bone mineral density, provide only modest accuracy. If better 
spatial resolution of trabecular bone in a clinical scan were available, a more complete assessment of fracture risk 
would be obtained using microarchitectural measures of bone (i.e. trabecular thickness, trabecular spacing, bone 
volume fraction, etc.). However, increased resolution comes at the cost of increased radiation or can only be 
applied at small volumes of distal skeletal locations. This study explores super-resolution (SR) technology to 
enhance clinical CT scans of proximal femurs and better reveal the trabecular microarchitecture of bone. Using a 
deep-learning-based (i.e. subset of artificial intelligence) SR approach, low-resolution clinical CT images were 
upscaled to higher resolution and compared to corresponding MicroCT-derived images. SR-derived 2-dimen-
sional microarchitectural measurements, such as degree of anisotropy, bone volume fraction, trabecular 
spacing, and trabecular thickness were within 16 % error compared to MicroCT data, whereas connectivity 
density exhibited larger error (as high as 1094 %). SR-derived 3-dimensional microarchitectural metrics 
exhibited errors <18 %. This work showcases the potential of SR technology to enhance clinical bone imaging 
and holds promise for improving fracture risk assessments and osteoporosis detection. Further research, 
including larger datasets and refined techniques, can advance SR’s clinical utility, enabling comprehensive 
microstructural assessment across whole bones, thereby improving fracture risk predictions and patient-specific 
treatment strategies.   

1. Introduction 

Osteoporotic fractures commonly occur in the hip and vertebrae and 
are associated with a $17 billion burden in healthcare-related costs 
[1,2]. Not simply an economic burden, osteoporotic fractures are a 
significant cause of morbidity and mortality in the aging population 
[3–5]. In fact, hip fractures are fatal in 20 % of cases and permanently 
disabling in 50 % of cases [6]. It is estimated that 40–46 % of women 
over 50, and 13–22 % of men over 50 will suffer an osteoporosis-related 
fracture [7]. With the number of people over 60 projected to nearly 
triple by 2050 [8], a significant increase in at-risk populations for 

fracture is imminent. Thus, the need is immediate to identify those at 
greatest risk of bone fracture and provide timely intervention. 

Over the past two decades, significant progress has been made in our 
understanding of bone fragility and fracture [9]. However, over the 
same period, little progress has been made clinically to reliably identify 
those at risk of fracture. This has been due in part to the narrow breadth 
of accessible biomarkers that indicate fracture risk. In fact, the only 
readily agreed upon clinical measure of fracture risk is bone mineral 
density (BMD). Unfortunately, since BMD only gives a coarse estimate of 
the amount of mineralized bone per unit volume, BMD alone has only a 
30–50 % success rate in predicting fractures [10–12]. Bone is a complex 
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structure with an intricate microstructural organization. Characterizing 
this microstructure (an indicator of bone quality) provides a signifi-
cantly improved estimate of bone’s structural integrity [13–15] 
compared to BMD. High-resolution peripheral quantitative computed 
tomography (HR-pQCT) has recently emerged as a promising technol-
ogy to clinically assess bone microstructure. Unfortunately, HR-pQCT is 
limited both in its low clinical availability and applicability. Only small 
volumes of bone at specific peripheral locations can be assessed (i.e., 
distal tibia, distal radius, etc.). A wealth of information describing 
bone’s structural integrity remains inaccessible, yet whole-bone de-
scriptions of structure are more predictive than single, or few simple 
measures [16]. A robust solution for assessing bone strength and frac-
ture risk should account for microstructural information like HR-pQCT 
but should be applicable to full bone volumes at any region of interest 
(e.g., hip, spine, etc.) like traditional computed tomography (CT). 

Super-resolution (SR) technology may offer a solution that stays 
within the constraints of traditional CT. SR is the process of predicting 
high-resolution (HR) images from low-resolution (LR) images [17] and 
is a challenging task in biomedical imaging because of both the difficulty 
in obtaining quality matched training data [18,19] and the clinical 
significance of correct/incorrect predictions [20]. However, as artificial 
intelligence (AI) has rapidly developed, several groups have successfully 
demonstrated AI-based (more specifically, deep-learning-based, which 
is a subset of algorithms within AI) SR of medical image data and have 
provided encouraging results for its application. Notably, Chaudhari 
et al. used cascaded convolutional neural network SR, DeepResolve, to 
enhance artificially down-sampled musculoskeletal magnetic resonance 
imaging (MRI) data (2.1 mm thickness to 0.7 mm thickness) [21,22]. 
Rudie et al. were also able to enhance MRI data (0.256 × 0.256 mm 
resolution to 0.256 × 0.128 mm in-plane resolution) using a commer-
cially available U-Net-based convolutional neural network SR product 
[23]. Li et al. showed that an 8× increase in resolution of inner ear bone 
could be faithfully recovered using clinical cone beam CT data (0.15 mm 
isotropic resolution to 0.018 mm isotropic resolution) with a Generative 
Adversarial network combined with Bayesian inference [24]. Guha et al. 
successfully performed SR to improve the in-plane spatial resolution 
from 0.2 mm to 0.15 mm using a special Generative Adversarial 
Network (GAN-CIRCLE), such that trabecular bone properties (trabec-
ular thickness, trabecular spacing, and trabecular network area density) 
could be better assessed in ankle scans of healthy volunteers using a 
multidetector-row CT [25]. While these studies, among others [26–30], 
have progressed the science of SR in biomedical imaging, there still 

remain challenges before traditional clinical CT images of bone can yield 
microarchitectural detail sufficient for improved fracture risk assess-
ments and osteoporosis detection. First, to be clinically relevant, SR 
training should be performed on natively obtained LR image data and 
not down-sampled from HR data to ensure generalizability to actual 
clinical scanners, since down-sampled data often contains remnants of 
HR structural information not present in a natively-obtained LR scan 
(Fig. 1) [21,22,26]. Second, training data should come from a clinical 
scanner capable of imaging whole bones, such as femurs and vertebrae, 
and not small-volume, special use-case scanners [24,30]. Finally, 
quantitative outcome metrics of interest (e.g., trabecular thickness) 
should be comparable in their accuracy to the quantitative metric to the 
HR target (i.e., bone microarchitecture). Fracture risk algorithms using 
microarchitectural measures rely on raw, quantitative values, and thus 
knowing the actual value is critical. 

In this study, we perform 5× SR to proximal femur data obtained 
from a clinical CT scanner and compare microarchitectural measures to 
matched MicroCT-derived image data, as well as provide visual com-
parisons between SR and its HR and LR counterparts. To our knowledge, 
this work contains the novel contributions of 1) using whole, human 
long-bone image data, 2) matching image sets from a clinical scanner 
and a separate, MicroCT scanner, and 3) demonstrating the ability to 
predict relevant microarchitectural bone metrics LR image data from 
which microarchitectural measures cannot be obtained. 

2. Methods 

The overall methods of this work involve creating matched pairs of 
HR and LR images (taken from different scanners), and training a SR 
deep learning neural network to predict an HR-like image from LR image 
input (Fig. 2). The following sections describe these methods in detail. 

2.1. Training data 

Ten cadaveric femurs from 6 donors (3 male, 3 female, 55–85 years 
old) were cut 4 in. below the lesser trochanter (isolating the proximal 
femur) and imaged via two different CT methods. The LR dataset was 
acquired on a Canon Precision clinical CT operated in an ultra-HR mode 
(0.4 × 0.5 mm x-ray focal spot, 0.25 mm acquisition slice thickness). 
Imaging dose (CTDIvol) for the scan was estimated at ~20 mGy. The 
images were reconstructed using a HR bone kernel (FC30) on a 1024 ×
1024 matrix with 0.3125 mm pixel spacing. As such, the discretization 

Fig. 1. Comparison between HR data from the femoral head (left), artificially down-sampled HR data (middle), and image data with the same resolution as (middle) 
but obtained via clinical imaging (right). To create the artificially down-sampled data, we used a 5× down-sampling and added 3 × 3 kernel Gaussian noise. In both 
the middle and right images, the resolution is 5 times less than the original HR data on the left. Less detail, more blurring, and overall poorer image quality is 
observed in the clinical scan (right) compared to the down-sampled HR image data (middle). The blue circle highlights specific detail that is still present in the 
modified HR image that is not present in the native LR image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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of the LR dataset was 0.3125 mm in the axial plane with 0.25 mm slice 
thickness. The HR dataset was obtained on a large bore MicroCT (X50- 
CT, North Star Imaging, Inc.), which is not designed for clinical imaging. 
The scan was obtained using 100 kV voltage, 80 μA current, and a focal 
spot size of 8 μm with 7920 total projections. Average voxel size (dis-
cretization) in the MicroCT image data was isotropic 60 μm with a range 
of 56–68 μm. 

For each femur, the LR image data was registered to the HR image 
data via mutual information [31]. Translation, rotation, and scaling 
were all allowable in the registration process. Scaling was necessary 
because of distortions between the two image sets, and the LR image 
data often needed 1–2 % scaling in at least one axis to ensure the best 
possible alignment (automatically applied via mutual information). The 
LR data was upsampled using cubic interpolation to the same voxel 
spacing as the MicroCT (0.3125 × 0.3125 × 0.25 mm ➔ ~0.6 mm 
isotropic resolution), resulting in image-to-image correspondence. To 
avoid overfitting unimportant (non-bone) data and noise within each 
MicroCT scan, bone in the MicroCT images was automatically 
segmented via U-Net deep learning, and the resulting segmentation was 
inverted and used to set the underlying grayscale values to zero. For 
each bone, a separate U-Net model was trained on a few slices of manual 
segmentations and applied to the rest of the slices in the scan. Each 5- 
layer U-NET model was trained and implemented in Dragonfly using 
their built-in segmentation wizard, which uses TensorFlow deep 
learning packages. A patch size of 64 was used with a stride ratio of 0.25. 
A CategoricalCrossentropy [32] loss function was implemented with the 
Adadelta optimization algorithm [33] using a decay of 0, an epsilon of 
1e-7, a learning rate of 1, and a rho value of 0.95. The image data was 
augmented 10 times using a combination of flips (horizontal and ver-
tical), rotations (up to 180 degrees), shear (up to 2 degrees), scale 
(90–110 %), and brightness (80–120 %). Images from the matched fe-
murs were exported for training in all 3 planes (frontal, axial, and 
sagittal). Each femur provided ~4 k images between all 3 planes, and 
thus the full training data consisted of ~40 k full images (Fig. 3). We 
split this data into a training and validation set using an 80/20 ratio. 
Hence, we train our SR model on 32 k images and validate our model 
parameters on the remaining 8 k images. All image data were processed 
using Dragonfly v2022.2 (Comet Technologies, Montreal, Quebec). 

2.2. Super-resolution 

To perform deep-learning based SR, we used a Super Resolution 
Generative Adversarial Network (SRGAN) [34] to produce SR images 

from LR image inputs. The model was adopted from an open-source 
third party repo (https://github.com/leftthomas/SRGAN) and imple-
mented outside of Dragonfly. The SRGAN model uses adversarial 
training [35] to generate SR images that exist in the same image dis-
tribution as HR images. The SR generator model is a 5-block deep re-
sidual network [36] used to generate an output image with 4× scaling of 
the input image. Note that the original resolution of the LR image is 5×
less than the HR, but the network was implemented with a 4× scaling. 

Fig. 2. Overall workflow of creating matched pairs of images to be used as training in the SR deep learning neural network. SRGAN was the network implemented 
and is described in Section 2.2. 

Fig. 3. Example training pairs taken from the femoral head. LR image data is 
on the left column, and the segmented MicroCT image data is on the right. Here, 
the femoral head is zoomed in on to show the differences between the LR and 
HR image data. 
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Effectively, the LR data was sampled to be 4× less than the HR image 
resolution after the LR images were upsampled for image alignment. The 
discriminator was a convolutional network with a sigmoid function to 
predict whether the input is an HR or LR image. For a detailed 
description of SRGAN, see [34]. We trained both the generator and 
discriminator from scratch for 10 epochs with a batch size of 4, using a 
learning rate of 1e-4 for the generator and 1e-8 for the discriminator. To 
train, a random crop of 400 × 400 was taken from the HR image, and the 
corresponding region in the LR image is down-sampled by 4× to 100 ×
100. This pair represented the LR input and the HR target image. Due to 
scan-to-scan variation, the dynamic range of pixel values between bone 
scans may differ significantly. Data were normalized for each bone by 
setting the zero grayscale values to the next lowest grayscale value 
because some scans had the second lowest value at 1, while others had 
values as high as 150. In both cases, these second lowest values were 
marrow space and not bone. Subsequently, the grayscale values were 
normalized to 0–255 and converted to 8-bit PNG images. In preliminary 
testing, we observed significant (qualitative) image degradation past 10 
epochs. Images appeared blurry with poor distinction between indi-
vidual trabeculae. 

The discriminator was trained with a simple classification loss, while 
the generator used a multi-part loss including the perceptual loss 
[37,38]. The perceptual loss was measured between the feature maps of 
a Visual Geometry Group (VGG, pretrained on ImageNet) network 
output from both the HR and SR images. This encourages the SR image 
to be perceptually similar to the HR image rather than strictly enforcing 
pixel-wise agreement which tends to produce overly smooth outputs 
[34,38,39]. The total generator loss was a summation of the mean- 
squared error between the SR and HR images, mean-squared error on 
the VGG feature maps (perceptual loss), the adversarial classification 
loss, and a total-variation loss [40] (Eq. (1)). The SRGAN model was 
developed and implemented in PyTorch [34] on an Nvidia GeForce RTX 
2080 Ti GPU. Training for 10 epochs took ~12 h. 

LG = λMSELMSE + λperLper + λadvLG
adv + λtvLtv (1)  

2.3. Test set 

Two cadaveric femurs from 2 donors (left femur from a 63-year-old 
male and a right femur from a 71-year-old female) were used as a test set 
and were not included in the training or validation set. These bones were 
imaged and processed in the same manner as during training. 

2.4. Analysis 

For GANs, the network performances are generally measured using 
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [41]. 
PSNR measures absolute error between the reference and target image, 
while SSIM is a perceptual metric that measures image quality degra-
dation between two images through structural changes. PSNR is defined 
in Eq. (2) using the squared maximum image pixel value 

(
MAX2

I
)

and the 
mean-squared error (MSE) between the SR and HR images. 

PSNR = 10*log10
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I
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)

(2) 

SSIM is shown in Eq. (3), comparing the luminance, contrast, and 
structure between two images using the computed mean μ and standard 
deviation σ pixel values of each image. 

SSIM(x, y) =

(
2μxμy + C1

)(
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)

(
μ2

x + μ2
y + C1

)(
σ2

x + σ2
y + C2

) (3) 

C1 = 0.012 and C2 = 0.032 provide numerical stability in the case 
that μ and σ values are near zero. 

In practice, SSIM is not computed over the entire image but rather 

local windows to account for spatial variations in quality. The reported 
SSIM is the average across all local windows in the image. 

PSNR has been shown to not reliably capture perceived visual quality 
[41]. This effect is likely exacerbated in the present study because of the 
abundance of zero-pixels in the bone scans. We therefore elected to use 
SSIM to select the best performing model from the validation set. For 
each test bone, SR images were produced in each of the three anatomical 
planes. Results were similar in all three planes and between each test 
bone, and therefore, only one test bone (male) in the frontal plane is 
reported. However, visual comparisons for the female test bone are 
provided (frontal plane). Also, using frontal plane images, an axial view 
is provided to show the error that is introduced by stacking two- 
dimensional (2D) slices. SR-generated images from the frontal plane, 
when stacked and viewed axially, highlight a weakness in our SR 
approach. 

Since the SRGAN works 2D image planes, 2D microstructural mea-
surements were first obtained in a small set of representative trabecular 
regions of interest to illustrate performance in the native domain of the 
SR network. The 2D microarchitectural measures were taken from three 
10x10mm crops, one at the femoral head, one at the femoral neck, and 
one in the greater trochanter. Considering that future clinical applica-
tions of the trabecular metrics are likely to involve three-dimensional 
(3D) analyses, we have further quantified the accuracy of 3D measure-
ments using 24 spatially dispersed, 10x10x10mm cubes of image data 
throughout the entire proximal femur (Fig. 4, left). 

To calculate the 2D microarchitectural parameters (degree of 
anisotropy (DA), trabecular thickness (Tb.Th.), trabecular separation 
(Tb.Sp.), bone volume fraction (BV/TV), and connectivity density 
(Conn.D)), the SR images were segmented via Adaptive Gaussian seg-
mentation [42] and processed using Dragonfly’s Bone Analysis package. 
For the Adaptive Gaussian segmentation, the sigma parameter (amount 
of variation or dispersion of the set of values within the defined neigh-
borhood) was set to 15, and the offset (constant subtracted from the 
weighted sum of neighborhood to calculate the local threshold value) 
was set to 0. These values were selected based on prior experience with 
segmenting HR image data. The segmentation was performed with a 
sliding 3x3mm square kernel. 

3D microarchitectural parameters (eigenvector 1 and 3 of the fabric 
tensor and their associated eigenvalues (using mean intercept length), 
Tb.Th., Tb.Sp., and BV/TV) were calculated using medtool 4.6 (Dr. Pahr 
Ingenieurs e.U, Pfaffstätten, Austria). For the 3D analyses, frontal im-
ages were used, and the 3D segmentation was a product of stacking 2D 
segmentations of each slice. 

For all metrics, errors were calculated as: 

Ground Truth (HR) − Predicted Value (SR)
Ground Truth (HR)

where a positive error is an underprediction, and a negative error is an 
overprediction. 

3. Results 

3.1. Super-resolution deep learning network performance 

We selected the best performing model from the epoch that produces 
the highest SSIM on the validation set using randomly selected image 
patches. This is an SSIM of 0.6111across the image patches. We use this 
trained model for evaluation on the unseen test set. 

We report the corresponding PSNR and SSIM on validation set on the 
entire image as 19.333 dB and 0.7917, respectively. 

On the test set, for the unseen bones, these values are 18.437 dB and 
0.7725 (63-year-old male) and 16.671 dB and 0.7589 (71-year-old fe-
male). During training and validation, image patches are randomly 
sampled from each image to be evaluated. While on the test set, we 
evaluate the entire image. Hence, the sampling of a single image patch 
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may result in a lower score for the validation set because of the abun-
dance of black regions in the CT scans. 

3.2. Bone analysis 

SR images from the frontal plane appear perceptually similar to the 
MicroCT image data for the femoral head (Fig. 5), femoral neck (Fig. 6), 
and greater trochanter (Fig. 7) of the male test bone; the female test bone 
showed similar qualitative results (Fig. 8). 2D microarchitectural mea-
sures from the SR image data such as DA, BV/TV, and Tb.Th. show good 
agreement with the MicroCT image data (maximum error of 12 % with 

average error below 5 %) for the femoral head (Table 1), femoral neck 
(Table 2), and the superior portion of the greater trochanter (Table 3). 
Conn.D measures show poor agreement between the two image sets. Tb. 
Th. was consistently overpredicted in the SR image data with minor 
error in the diaphyseal region and femoral neck, while the femoral head 
and greater trochanter had the largest error. 

Overall, 3D microarchitectural measures taken from the femoral 
head show worse agreement with the MicroCT image data than the 2D 
analysis. Tb.Th. and the two eigenvalues show the best agreement 
(average error of 7 % and 5–7 %, respectively), while BV/TV and ei-
genvectors show the poorest agreement (12 % and 18–19 degrees, 

Fig. 4. Left: selected regions to assess 3D microarchitecture. Right: example 3D image data (beige) taken from one of the regions shown on the left using a sagittal 
cutting plane. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Comparisons between LR, SR, and MicroCT image data taken from a frontal section in the femoral head for the 63-year-old male. On the right, the segmented 
SR image data are overlaid on the MicroCT image data. Microarchitectural parameters from the section are shown in the upper left. The PSNR and SSIM of the LR 
slice was 12.27 dB and 0.14, respectively. The PSNR and SSIM of the SR data was 13.46 dB and 0.47, respectively. Scale bar shows 1 mm increments. 
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respectively) (Table 4). Tb.Sp. yielded moderate agreement (9 % error). 
Out-of-plane images from the SR image data appear to be of poorer 
quality when compared to the natively processed image plane (Fig. 9). It 
should be noted that the application of the same segmentation algorithm 
on the native LR images yielded a substantial over-estimation of bone 
that resulted in unusable trabecular measurements. 

4. Discussion 

In this study, we applied SR to relatively coarsely sampled (0.3125 ×
0.3125 × 0.250 mm) proximal femur CT image data and predicted 
~0.06 mm isotropic image data with reduced noise and sharp contrast 
between bone and non-bone. To our knowledge, this is the first imple-
mentation of >4× SR to recover microarchitectural parameters using a 
clinical scanner capable of whole bone in vivo imaging. The SR-derived 
microarchitectural measures show good agreement to MicroCT-derived 
microarchitectural measures and is especially significant because 
microarchitectural parameters were not recoverable from the native LR 
image data using the same segmentation algorithms as applied to the SR 

images. Microarchitectural measures have been associated with 
improved fracture risk prediction [43–48]. 

Overall, 2D microarchitectural measures from the SR image data 
were in good agreement with the microCT-derived measures. Tb.Th., 
BV/TV, and principal directions from the fabric tensor were within ~10 
% of the MicroCT-derived measures. Tb.Sp. was predicted well in some 
areas (femoral neck) and poorer in other areas (femoral head) with er-
rors between 2 and 16 %. Conn.D showed the poorest comparison and 
highlights a weakness in 2D SR. Small instances of bone that likely go in- 
and out-of-plane are not correctly predicted in 2D. The SR network may 
interpret this as noise (or there is nothing there to pick up from the LR 
image data), and thus the bone is not recovered in the SR image data. As 
such, these small instances of bone in the 2D MicroCT image data create 
incongruity in the bone microarchitecture, which lowers the connec-
tivity density. The SR data emphasized in-plane connections, and 
overestimates the overall connectivity without the small, seemingly 
unconnected instances of bone. This weakness is also shown in the 3D 
microarchitectural predictions. While Conn.D is not calculated by 
medtool software, we observe an over-estimation in trabecular spacing. 

Fig. 6. Comparisons between LR, SR, and MicroCT image data taken from a frontal section in the femoral neck for the 63-year-old male. On the right, the segmented 
SR image data are overlaid on the MicroCT image data. Microarchitectural parameters from the section are shown in the upper left. The PSNR and SSIM of the LR 
slice was 12.35 dB and 0.14, respectively. The PSNR and SSIM of the SR data was 13.23 dB and 0.48, respectively. Scale bar shows 1 mm increments. 

Fig. 7. Comparisons between LR, SR, and MicroCT image data taken from a frontal section in the greater trochanter for the 63-year-old male. On the right, the 
segmented SR image data are overlaid on the MicroCT image data. Microarchitectural parameters from the section are shown in the upper left. The PSNR and SSIM of 
the LR slice was 12.48 dB and 0.15, respectively. The PSNR and SSIM of the SR data was 13.44 dB and 0.48, respectively. Scale bar shows 1 mm increments. 
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The overestimation in 3D is likely a function of the same issue. Since in- 
and out-of-plane bone is not correctly captured, larger gaps are observed 
between the trabeculae and finer detail is lost. The issue of larger gaps is 

especially evident in Fig. 9. SR images predicted from frontal plane LR 
images show poor visual comparisons to the MicroCT data when looking 
at the axial plane. However, SR images from axial plane LR input 
correctly shows finer detail observable in the MicroCT data. While 
averaging data from each of the three planes may improve the results, 
we believe that the resulting images may induce extra blurring with any 
misalignment in the images and would also introduce error from each of 
the three planes. We therefore did not pursue this approach. Nonethe-
less, since all three image planes would be available, in a clinical 
application, it may be prudent to independently use all three imaging 
planes to assess a given bone to get a more complete presentation of the 
bone. The 3D results also show greater error in BV/TV than what is 
observed in 2D. Since the 3D volumes are built from stacking 2D images 
and segmentations, the small 2D errors compound through the 
thickness. 

In general, the network performed equally well in various 2D loca-
tions in the proximal femur with a bit of performance degradation (over- 
predicting both Tb.Th. and Tb.Sp.) in the greater trochanter (seen in 

Fig. 8. Comparisons between LR, SR, and MicroCT image data taken from frontal section taken from the greater trochanter, femoral head, and femoral neck for the 
71-year-old female. On the right, the segmented SR image data are overlaid on the MicroCT image data. For the LR data, PSNR values were 10.7178, 6.7198, and 
9.2041 for the greater trochanter, femoral head, and femoral neck, respectively. SSIM values were 0.0117, 0.0146, and 0.0199. For the SR data, PSNR values were 
8.3807, 7.6733, and 9.1579 for the greater trochanter, femoral head, and femoral neck, respectively. SSIM values were 0.0773, 0.0321, and 0.2439. 

Table 1 
2D microarchitectural parameters measured at the femoral head for the 63-year- 
old male. Error of the SR compared to the MicroCT data is shown 
parenthetically.  

Bone metric Super resolution MicroCT ground truth 

DA 0.99 (0 %)  0.99 
BV/TV 40 % (5 %)  42 % 
Tb.Th. (mm) 0.46 (− 7 %)  0.43 
Tb.Sp. (mm) 0.73 (− 16 %)  0.63 
Conn.D (mm− 2) 35.26 (− 31 %)  26.93  

Table 2 
2D microarchitectural parameters measured at the femoral neck for the 63-year- 
old male. Error of the SR compared to the MicroCT data is shown 
parenthetically.  

Bone metric Super resolution MicroCT ground truth 

DA 1 (0 %)  1 
BV/TV 23 % (8 %)  25 % 
Tb.Th. (mm) 0.37 (12 %)  0.42 
Tb.Sp. (mm) 1.29 (− 2 %)  1.26 
Conn.D (mm− 2) 10.97 (2 %)  11.14  

Table 3 
2D microarchitectural parameters measured at the superior portion of the 
greater trochanter for the 63-year-old male. Error of the SR compared to the 
MicroCT data is shown parenthetically.  

Bone metric Super resolution MicroCT ground truth 

DA 1 (1 %)  0.99 
BV/TV 31 % (− 3 %)  30 % 
Tb.Th. (mm) 0.39 (− 11 %)  0.35 
Tb.Sp. (mm) 0.85 (− 15 %)  0.74 
Conn.D (mm− 2) 24.18 (− 120 %)  10.97  

Table 4 
Microarchitectural parameter errors from the 3D cubes of SR image 
data compared to HR for the 63-year-old male. In this data, the Z vector 
is through the thickness of the slices (perpendicular to the frontal 
plane). The X vector runs medial to lateral, and the Y vector runs 
inferior to superior. The standard deviation measures (Tb.Th. (std) and 
Tb.Sp. (std)) are standard deviations within the same image cube of 
data (intra-variability). The ± after the error are standard deviation 
measures between the 3D cubes of data (inter-variability).   

Error 

Tb.Th (mean)  − 7 % ± 7 % 
Tb.Th (std)  18 % ± 12 % 
Tb.Sp. (mean)  9 % ± 5 % 
Tb.Sp. (std)  9 % ± 8 % 
BV/TV  − 12 % ± 7 % 
Eigenvector 1 Angle (degrees)  18 ± 6 
Eigenvalue 1  5 % ± 4 % 
Eigenvector 3 Angle (degrees)  19 ± 6 
Eigenvalue 3  7 % ± 5 %  
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Figs. 7 and 8). This is likely a consequence of too little training data and 
thinner, more sparse bone in that particular part of the femur. Since the 
greater trochanter makes up a relatively smaller part of the bone, more 
training data is likely needed to better represent the type of micro-
architecture most often observed in this location. Moreover, the 
trabecular bone in the greater trochanter appears thinner and sparser 
than bone in the other observed locations (e.g. femoral head), and the LR 
data does not capture this detail well enough to accurately reconstruct 
the microarchitecture. Nonetheless, the microarchitectural parameters 
(in 2D) from this region were still reasonably predicted, although a 3D 
prediction in this location may not compare well to MicroCT data. The 
greater trochanter may also be less consequential when assessing frac-
ture risk and femoral strength compared to the femoral head/neck. 
Performance degradation in this location may therefore be acceptable. 
However, it should be noted that further work must be performed with 
osteoporotic bone to test if the problem is specific to thin and sparse 
bone, or if it’s a problem of insufficient training data. Given the overall 
sparseness and thin microarchitecture of the female test bone (which 
was predicted well in Fig. 9), we believe the problem is better attributed 
to insufficient training samples of the greater trochanter and the unique 
microarchitecture in this specific area, though future work should test 
this. 

The SSIM and PSNR evaluation metrics are poorer than other 
comparative studies that report these metrics ([21] reports 0.7 and 26 
dB for the SSIM and PSNR, respectively, compared to our values of 0.76 
and 17 dB, and [26] reports 0.94 and 29.4 dB for the SSIM and PSNR, 
respectively). Because the image data came from two different scanners, 
and the SR data was created from a SR model trained with segmented HR 
data (which was not used for the calculation of PSNR and SSIM), it is 
difficult to achieve a high SSIM value (>0.8). However, the intent of this 
study was to focus on the trabecular microarchitecture and the accurate 
recovery of metrics relevant to fracture risk. Thus, little effort was given 
to improving these metrics, as we deemed the study successful when it 
became possible to reliably segment the SR data and compare it to the 
HR data. 

Successful SR of clinical CT image data has significant implications 
for clinical fracture risk assessment. In ex vivo studies, micro-
architectural information across whole-bone image data has enabled 
highly accurate patient-specific finite element models, which supports 
the importance of microarchitecture in bone strength, and therefore, 
fracture risk [13–15,49]. Moreover, after performing a large 

retrospective meta-analysis on the use of microarchitectural measures in 
fracture risk, the Bone Microarchitecture International Consortium 
(BoMIC) concluded that microarchitectural measures are significant 
predictors of fracture risk and are encouraging their use in future al-
gorithm development [50]. In each of the studies that the BoMIC 
assessed, HR-pQCT was the prescribed imaging modality, which only 
provided small volumes of bone to scrutinize at peripheral skeletal lo-
cations away from the site of fracture (e.g. distal tibia). Clinical acces-
sibility to microarchitectural information at whole-bone scales for any 
bone of interest may create new paradigms for fracture risk assessments. 

This study has several limitations. The training and test set were 
small. While the training and validation set included ~40 k images that 
are further cropped into smaller images to create 250 k+ training 
samples, the images came from only 6 donors. The donors were older 
individuals, and it is unknown how well the network would perform 
with younger individuals with more robust microarchitecture. Similarly, 
the test set only contained two femurs. However, since the network is 
predicting HR data across the entire bone, we find it encouraging that 
different areas with different microarchitectures are predicted well. 

Another clinically limiting weakness of the current study is the 
clinical CT scanner, which is not representative of commonly available 
CT devices. The Aquilion Precision employs state-of-the-art hardware to 
achieve 1.5× – 2× improved spatial resolution compared to current 
conventional CT systems, enabling visualization of down to ~150 um 
details in appropriately optimized scan protocols [51–54]. Earlier 
studies have found appreciably better correlations against uCT of 
trabecular measurements obtained on Precision CT operated in an ultra- 
high resolution mode (the same as used in the current study, 0.25 mm 
slice thickness) compared to standard resolution imaging (0.5 mm slice 
thickness) - for example, Tb.Sp. correlation coefficient of 0.74 at ultra- 
high resolution vs. <0.1 at standard resolution [55]. An algorithm 
that works with other, more ubiquitous scanners would provide pro-
portionality more clinical benefit. However, it is worth noting that 
photon-counting CT, first commercialized in the US in 2021 and widely 
anticipated to become a clinical standard in the future, may provide 
spatial resolution comparable to or slight higher than that of the Aqui-
lion Precision CT [56–59] and may thus similarly benefit from the 
proposed SR technique. 

Since the acceptable alignment of the LR image data with the 
MicroCT image data required scaling of 1–2 % of the LR image data, the 
resulting SR images may over- or under-estimate the volume of bone by 

Fig. 9. Comparisons between SR processed from both axial (top) and frontal (bottom) planes and MicroCT image data taken from an axial section in the femoral head 
(middle) for the 71-year-old female. The blue circled regions highlight the accurate reconstructions from the axial plane as compared to the reconstructed frontal 
planes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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a similar amount. We find this to be an acceptable tradeoff, as the image 
alignment using real image data from two different scanners ensures 
that the network is generalizable to an actual clinical scanner for whole 
bones and does not include detail in the LR image data that would not 
normally be present (Fig. 1). Finally, the SR results do not enable the 
calculation of mineralization since the contrast is relative to the 
normalization scheme used in the training. The SR image data tends to 
be more binary in its presentation, and any visual contrast should not 
necessarily be interpreted as differences in mineralization. 

5. Conclusion 

In conclusion, SR was implemented for whole, proximal femurs and 
demonstrates the applicability of such technology for clinical radiology. 
In general, we found that deriving microarchitectural parameters on a 
slice-by-slice basis (2-dimensional) yielded better results than 3-dimen-
sional measures. We attribute this to the 2-dimensional nature of the 
deep learning SR model. We also found that areas with sparser bone (e. 
g., the greater trochanter) was poorly predicted from the SR model 
compared to areas of bone that had a higher bone volume fraction (e.g., 
the femoral head). This work helps to better reveal bone micro-
architecture at whole-bone scales, which may help improve bone frac-
ture predictions. 
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