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External validation of 18F-FDG PET-based radiomic models 
on identification of residual oesophageal cancer after 
neoadjuvant chemoradiotherapy
Maria J. Valkemaa, Roelof J. Beukingab, Avishek Chatterjeec, 
Henry C. Woodruffc,d, David van Klaverene, Walter Noordzijb, Roelf Valkemaf, 
Roel J. Benninkg, Mark J. Roefh, Wendy Schreursi, Michail Doukasj, 
Sjoerd M. Lagardea, Bas P.L. Wijnhovena, Philippe Lambinc,d, 
John T.M. Plukkerk and J. Jan B. van Lanschota

Objectives  Detection of residual oesophageal 
cancer after neoadjuvant chemoradiotherapy (nCRT) is 
important to guide treatment decisions regarding standard 
oesophagectomy or active surveillance. The aim was 
to validate previously developed 18F-FDG PET-based 
radiomic models to detect residual local tumour and to 
repeat model development (i.e. ‘model extension’) in case 
of poor generalisability.

Methods  This was a retrospective cohort study in 
patients collected from a prospective multicentre study in 
four Dutch institutes. Patients underwent nCRT followed 
by oesophagectomy between 2013 and 2019. Outcome 
was tumour regression grade (TRG) 1 (0% tumour) 
versus TRG 2-3-4 (≥1% tumour). Scans were acquired 
according to standardised protocols. Discrimination and 
calibration were assessed for the published models with 
optimism-corrected AUCs >0.77. For model extension, 
the development and external validation cohorts were 
combined.

Results  Baseline characteristics of the 189 patients 
included [median age 66 years (interquartile range 60–71), 
158/189 male (84%), 40/189 TRG 1 (21%) and 149/189 
(79%) TRG 2-3-4] were comparable to the development 
cohort. The model including cT stage plus the feature ‘sum 
entropy’ had best discriminative performance in external 
validation (AUC 0.64, 95% confidence interval 0.55–0.73), 
with a calibration slope and intercept of 0.16 and 0.48 
respectively. An extended bootstrapped LASSO model 
yielded an AUC of 0.65 for TRG 2-3-4 detection.

Conclusion  The high predictive performance of the 
published radiomic models could not be replicated. The 
extended model had moderate discriminative ability. The 
investigated radiomic models appeared inaccurate to 
detect local residual oesophageal tumour and cannot 

be used as an adjunct tool for clinical decision-making 
in patients. Nucl Med Commun 44: 709–718 Copyright © 
2023 The Author(s). Published by Wolters Kluwer Health, 
Inc.
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Introduction
Standard treatment for patients with locally advanced 
oesophageal cancer is neoadjuvant chemoradiother-
apy (nCRT) followed by oesophagectomy 6–14 weeks 
after nCRT [1]. Approximately 30% of patients have 
a pathologically complete response (pCR) in the 
resection specimen [2]. Based on this finding, not all 
patients might require oesophagectomy after nCRT. 
The possibility of active surveillance for patients with 
a clinically complete response after nCRT is currently 
investigated [3,4]. During active surveillance, surgery 
is offered only when locoregional tumour is detected 
during clinical response evaluations without evidence 
of distant metastases on 18F-FDG PET/CT. The com-
bination of endoscopy with bite-on-bite biopsies and 
endoscopic ultrasound with fine-needle aspiration 
(EUS-FNA) of suspected lymph nodes is 90% sensi-
tive to detect >10% locoregional residual tumour [5]. 
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Further optimisation of tumour detection after nCRT 
might contribute to improved selection of patients for 
active surveillance.

High-throughput quantitative imaging, known as radi-
omics, has been proposed for diagnosis, response eval-
uation, and prognostication in various types of cancer 
[6]. Previously, for oesophageal cancer patients who 
underwent nCRT, internally validated diagnostic pre-
diction models have been developed using pre- and 
post-treatment 18F-FDG PET radiomic features and 
clinical variables to identify patients with pCR at the 
primary tumour site [7]. The six best performing mod-
els all included one post-treatment radiomic feature 
plus clinical tumour (cT) stage. An optimism-corrected 
area under the receiver operating characteristic curve 
(AUC) of 0.81 was achieved. Such prediction models 
could potentially be used as a non-invasive add-on tool 
to the current diagnostic set for clinical response eval-
uations after nCRT.

The previously developed models have not been exter-
nally validated, meaning that they have not been evalu-
ated in patients treated in different hospitals. It is thus 
unknown whether the models are useful in the clinical 
setting. The aim of the present study was to externally 
validate the previously developed models and to explore 
the possibility of model redevelopment in case of poor 
generalisability.

Patients and methods
Study design
This is a retrospective (TRIPOD type 4) [8] exter-
nal validation study. Medical ethical approval was 
obtained for conduct of this study (MEC-2019-0227). 
All patients provided written informed consent. The 
Standards for Reporting Diagnostic Accuracy check-
list [9], Radiomics reporting guidelines of the Image 
Biomarker Standardisation Initiative (IBSI) [10] and the 
radiomic quality score [6] for this study are provided in 
Supplemental Tables 1-3, Supplemental digital content 
1, http://links.lww.com/NMC/A248.

Patients
The validation cohort included patients who were 
identified from the databases of the pre–Surgery As 
Needed for Oesophageal cancer (preSANO) trial and 
the surgery arm of the SANO trial [3,5]. All patients 
were referred to standard oesophagectomy 6–14 weeks 
after CROSS [2] chemoradiotherapy between 2013 and 
2019 in four high-volume Dutch institutes. Patients 
had 18F-FDG avid tumours and had a pre-treatment 
radiotherapy planning CT scan and a post-treatment 
18F-FDG PET/low dose CT scan 6–12 weeks after 
nCRT available. The timing of the 18F-FDG PET/
CT scan within the preSANO trial and SANO trial was 
dependent on whether residual tumour was detected 

in the oesophagus after nCRT. As part of these study 
protocols, patients underwent clinical response eval-
uations after nCRT. The first clinical response evalu-
ation was performed at 4–6 weeks after nCRT using 
endoscopy with biopsies. When residual tumour was 
detected in the oesophagus, an 18F-FDG PET/CT 
scan was performed to exclude distant metastases 
prior to oesophagectomy. When no residual tumour 
was detected, a second clinical response evaluation 
was scheduled after 4–6 weeks. This clinical response 
evaluation comprised 18F-FDG PET/CT, followed by 
endoscopy with biopsies and EUS-FNA of suspected 
lymph nodes. In absence of distant disease, patients 
were referred to standard oesophagectomy.

Imaging protocols
18F-FDG PET/CT scans were acquired according to 
EARL-1 guidelines [11], similarly to the development 
cohort [7]. Details on scanner types and imaging proto-
cols are listed in Supplemental Table 2, Supplemental 
digital content 1, http://links.lww.com/NMC/A248.

Assessment of clinical and outcome parameters
Clinical staging was performed using the 7th edition of 
the tumour, node, metastasis (TNM) staging system [12]. 
Outcome was defined as the response to nCRT at the 
primary tumour bed according to the Chirieac tumour 
regression grade (TRG) system [13]: TRG 1, 0% tumour; 
TRG 2, 1–10% tumour; TRG 3, 11–50% tumour; TRG 4, 
>50% tumour. TRG scores were assessed by dedicated 
upper GI pathologists (guided by M.D., with >10 years of 
expertise) and were dichotomised as TRG 1 versus TRG 
2-3-4.

Radiomic workflow
The radiomic workflow was performed according to 
the methodology as applied earlier [7] (Supplemental 
Table 2, Supplemental digital content 1, http://links.lww.
com/NMC/A248). In brief, primary tumour delineations, 
excluding lymph nodes, were based on gross tumour 
volumes available from radiotherapy CT scans. These 
volumes were transposed onto the low dose CT and 18F-
FDG PET scans using the resultant registration vectors. 
This determined the cranial and caudal borders of the 
primary tumour area on the post-treatment 18F-FDG 
PET/CT scans. Following, the tumour delineations at 
the left and right sides of the oesophagus were adapted 
manually to match the contour of the oesophagus, to 
adjust for tumour regression after nCRT using MIM 
Software version 7.1.3 (MIM Software Inc., Cleveland, 
OH, USA) in consensus by two investigators (R.J.B., 
who performed tumour delineations in the develop-
ment cohort, and M.J.V). A threshold method was delib-
erately omitted since this was inaccurate in patients 
with a major metabolic response after nCRT. 18F-FDG 
PET scans were converted to SUV and corrected for 
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serum glucose. Voxels were resampled to dimensions of 
2 × 2 × 2 mm to obtain the same uniform isotropic voxel 
grid as in the development cohort. The same feature 
set as used before, comprising 101 radiomic features 
(Supplemental Table 4, Supplemental digital con-
tent 1, http://links.lww.com/NMC/A248), was calculated 
using an in-house developed software in Matlab 2014b 
(Mathworks, Natick, MA, USA) with definitions accord-
ing to the IBSI guidelines.

External validation
External validation was performed for the six inter-
nally validated models with optimism-corrected AUCs 
>0.77. For every patient in the external validation 
cohort, the logarithm of the odds ratio was calculated 
using the previously reported regression coefficients 
[7] as follows:

The probability of a patient having TRG 1 was calcu-
lated with the formula:

probability =
exp (LogO )

1+ exp (LogO )

Model extension
The previously developed models were revised to 
detect TRG 2-3-4, that is, ‘model extension’ [14], based 
on the development cohort and the external validation 
cohort combined. This enabled re-estimating (new com-
binations of) predictors in a larger sample size. Only 
post-treatment 18F-FDG PET features were considered 
based on the previous study [7].

The workflow for model extension is shown in Fig.  1. 
Features were standardised per scanner model, with fea-
tures set at mean 0 and SD 1 (Supplemental Appendix 1, 
Supplemental digital content 1, http://links.lww.com/NMC/
A248) [15]. The radiomic feature set was complemented 
with the variables cT stage, clinical lymph node (cN) 
stage, age, sex and histology [16]. Highly correlated varia-
bles were removed at a pair-wise absolute correlation cut-
off of 0.9. With the remaining variables, a least absolute 
shrinkage and selection operator (LASSO) model was 
developed with bootstrapping (200 bootstrap samples) 
[17]. A bootstrapped LASSO model limited to only clin-
ical variables was developed for reference. For compari-
son, another radiomic workflow was applied [18]. Using 
stratified random subsampling (details in Supplemental 
Appendix 1, Supplemental digital content 1, http://links.
lww.com/NMC/A248), performance estimates of three 
simple linear models and a random forest classifier were 
explored over 100 training and validation partitions of the 
dataset.

In case of insufficient model performance, model 
extension was repeated to distinguish substantial 
residual tumour (TRG 3-4) from no or minor residual 
tumour (TRG 1-2). This endpoint was chosen since it 
is in line with current research on active surveillance 
and might be appropriate since small residual tumour 
(1–10%) might not be detectable on 18F-FDG PET/
CT [3,5].

Statistical analysis
Continuous variables were presented as median with 
interquartile range (IQR), and comparisons were per-
formed with a parametric Student’s t-test or a nonpara-
metric Mann–Whitney U test. Categorical variables were 
reported with frequencies and percentages and were 
compared using a parametric chi-squared test or nonpara-
metric Fisher’s exact test. Two-sided P values <0.05 were 
considered statistically significant.

Discrimination of models was measured with AUC 
(ideal value: 1). Calibration was assessed for exter-
nally validated models using the calibration slope 
(ideal value: 1) and intercept (ideal value: 0). For every 
model, at a probability threshold chosen to obtain 90% 
sensitivity [5], corresponding specificity, positive pre-
dictive value, negative predictive value and accuracy 
were reported.

Statistical analysis was performed using R version 
4.0.4 (www.r-project.org). Code for data analysis was 
made publicly available via github.com/mjvalkema/
esophageal-cancer-radiomics.

Results
Patients
Some 189 were included in the external validation 
cohort (Fig.  2). Patients received treatment between 
July 2013 and May 2019 in the Erasmus University 
Medical Centre, Rotterdam (116 of 189 patients, 61%), 
the Amsterdam University Medical Centre, Amsterdam 
(28 of 189 patients, 15%), the Catharina Hospital 
Eindhoven, Eindhoven (25 of 189 patients, 13%) or 
the Zuyderland Medical Centre, Heerlen (20 of 189 
patients, 11%). 18F-FDG PET/CT scans were acquired 
at a median of 10.3 weeks after nCRT (IQR 8.1–11.2). 
Demographics and tumour characteristics were com-
parable between the validation cohort and the devel-
opment cohort, except for cN0/cN+ stage (cN0 stage 
in 67 of 189 patients (35%) versus 15 of 73 patients 
(21%) respectively, P = 0.024) (Table 1). Two patients 
had unresectable tumour (T4b), and were assigned an 
arbitrary ‘TRG 4’ score. The outcome TRG 1 versus 
TRG 2-3-4 was equally distributed between the devel-
opment and external validation cohorts (TRG 1 in 40 
of 189 patients (21%) versus 16 of 73 patients (22%), 
P = 1.00).

LogO = intercept + coefficientcT1−2 or cT3−4a

+ coefficientradiomic feature ∗ radiomic feature value
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Fig. 1

Radiomic workflow for model extension. In brief, radiomic features were calculated from gross volumes as delineated on post-treatment 18F-FDG 
PET/CT scans. Radiomic features were standardised per scanner model. After removal of highly correlated radiomic features, LASSO models 
were developed with bootstrapping for internal validation. A LASSO model based on radiomics plus clinical variables was compared to a reference 
LASSO model based on clinical variables only.
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External validation
The six evaluated radiomic features differed between 
the cohorts with statistical significance, as shown in 
Supplemental Table 5 and Figure 1, Supplemental dig-
ital content 1, http://links.lww.com/NMC/A248.

The six prediction models were applied on the external 
validation dataset. The radiomic feature values of each of 
the six models versus the outcome of interest are shown 
in Fig. 3. The extreme effect between outcome and cT 
stage as seen in the development cohort was less strong 
in the external validation cohort. Of the nine patients 
with cT1-2 stage in the development cohort, seven 
(78%) had complete response (TRG 1). The validation 
cohort comprised 41 patients with cT1-2 stage of whom 
12 (29%) had TRG 1 (P = 0.02) (Supplemental Table 6, 
Supplemental digital content 1, http://links.lww.com/NMC/
A248).

The performance metrics of the six models in the exter-
nal validation cohort are shown in Table  2 and Fig.  4. 
Discriminative performance improved when scans of one 
vendor were used, and decreased when a subgroup of 
only adenocarcinoma patients was used (Supplemental 
Figure 2, Supplemental digital content 1, http://links.
lww.com/NMC/A248). The model including cT stage and 
the feature ‘sum entropy’ had highest AUC [0.64; 95% 
confidence interval (CI) 0.55–0.73], with a calibration 
slope of 0.16 (95% CI −0.05 to 0.37) and intercept of 0.48 
(95% CI 0.0–0.96) (Table 2). For each of the externally 

validated models, histograms of the predicted proba-
bilities for TRG outcome are shown in Supplemental 
Figure 3, Supplemental digital content 1, http://links.lww.
com/NMC/A248.

Model extension
Radiomic features were corrected for variations across 
different scanner models (Supplemental Figures 4–6, 
Supplemental digital content 1, http://links.lww.com/
NMC/A248). Following, 49 variables with pair-wise abso-
lute correlations >0.9 were removed. A LASSO model 
was developed that included five variables with non-
zero coefficients, three of which were radiomic fea-
tures and the clinical variables cT stage and histology 
(Supplemental Table 7 and Figure 7, Supplemental 
digital content 1, http://links.lww.com/NMC/A248). The 
extended LASSO model yielded an optimism-cor-
rected AUC of 0.65 (uncorrected 0.75) (Table  3). The 
LASSO model with clinical variables (Supplemental 
Table 7 and Figure 7, Supplemental digital content 1,  
http://links.lww.com/NMC/A248) yielded and optimism- 
corrected AUC of 0.71 (uncorrected 0.73) (Table 3).

The LASSO modelling strategy was compared to another 
workflow for radiomic feature selection and model devel-
opment. The first step of this workflow indicated that 
a generic radiomic analysis was suitable, as shown in 
Supplemental Appendix 2 and Figure 8, Supplemental 
digital content 1, http://links.lww.com/NMC/A248. 

Fig. 2

Flow diagram of study patients of the external validation cohort.
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Performance distributions of the models combining 
the selected radiomic features (Supplemental Table 8, 
Supplemental digital content 1, http://links.lww.com/NMC/
A248) with clinical variables are shown in Supplemental 
Table 9, Supplemental digital content 1, http://links.
lww.com/NMC/A248. Over the 100 validation datasets, 
a Naive Bayes classifier achieved a mean AUC of 0.73 
(95% CI 0.63–0.84). Since an independent dataset was 
not available, optimism of this model could not be further 
investigated.

Models were also trained to detect substantial residual 
tumour (i.e. TRG 3-4), but this did not result in improved 

diagnostic accuracy compared to the models trained for 
the primary endpoint (i.e. TRG 2-3-4) (Table  3 and 
Supplemental Table 9, Supplemental digital content 1, 
http://links.lww.com/NMC/A248).

Discussion
Generalisability of previously developed 18F-FDG 
PET-based radiomic models [7] was not confirmed in 
this independent validation cohort. The discrimina-
tive ability of an extended LASSO model did not out-
perform the clinical reference model. The evaluated 
radiomic models in this study appeared insufficient as 
a potential adjunct tool for clinical decision-making in 
individual patients.

Several similar studies in oesophageal cancer have been 
performed, but most of these are limited by small sam-
ple sizes [20–23]. The results of the current study are 
best compared to the study of Van Rossum et al. [20], in 
which radiomic models did not meet a relevant threshold 
to impact clinical decision-making. Their best perform-
ing model, incorporating clinical variables and 18F-FDG 
PET parameters from 217 patients, achieved a corrected 
C-index of 0.77 for prediction of pCR [20].

The performance of the investigated models in this study 
was evaluated at a probability threshold to obtain 90% 
sensitivity, which is the benchmark for detection of resid-
ual TRG 3-4 tumour using gastroscopy with bite-on-bite 
biopsies and EUS-FNA of suspected lymph nodes [5]. 
The resulting specificity of the evaluated models for TRG 
2-3-4 detection at this threshold was low. Subsequently, 
models were trained to detect >10% residual tumour 
(TRG 3-4) versus 0–10% residual tumour (TRG 1-2). 
This endpoint may be justified since it might be safe to 
miss minor residual tumour initially, which then becomes 
timely detectable at one of the subsequent clinical 
response evaluations [5]. Furthermore, it might be easier 
to train a model to select features belonging to substan-
tial residual tumour, which is better visible on 18F-FDG 
PET/CT. However, models trained for the endpoint 
TRG 3-4 performed marginally better than a model with 
only clinical variables. Thus, for both endpoints, radiomic 
features appeared not of added value. This might be 
interpreted as the inability of the investigated features 
to capture pathophysiological information. Apparently, 
the radiomic features fail to encode information about 
differences in tissue between patients with and without 
(major) residual tumour after nCRT. This was different 
than in the derivation sample alone, in which radiomic 
features, representing, for example, orderliness of the 
voxels, appeared to distinguish residual tumour from nor-
mal tissue (with treatment effects) [7].

The finding that radiomics did not improve detection of 
residual tumours may not be surprising in the context of 
a previous study [24]. Qualitative assessment of 18F-FDG 

Table 1  Overview of study, patient and tumour characteristics

 
Development cohort  

(n = 73) 
External validation 
cohort (n = 189) P-valuea 

Data 
collection 
period

2014–2017 2013–2019 -

Study 
design

Consecutive patients 
from 1 prospective 

cohort

Consecutive patients 
from 2 prospective 

cohorts

-

Setting 1 high-volume Dutch 
hospital

4 high-volume Dutch 
hospitals

-

Treatment nCRT according to 
CROSS + surgery

nCRT according to 
CROSS + surgery

-

Timing of 
scan after 
nCRT

6–12 weeks after 
nCRT

6–8 weeks after 
nCRT

-

Outcome TRG according to 
Mandard [19]

TRG according to 
Chirieac [13]

-

Sex   0.54
 � Male 58 (79) 158 (84) -
 � Female 15 (21) 31 (16) -
Age 63 [59–69] 66 [60–71] 0.35
Histology   0.057
 � Adeno-

carcinoma
65 (89) 147 (78)  

 � Squa-
mous cell 
carcinoma

8 (11) 42 (22)  

Clinical 
T-stage

  0.10b

 � 1 0 (0) 1 (0.5)  
 � 2 9 (12) 41 (22)  
 � 3 59 (81) 140 (74)  
 � 4a 5 (7) 7 (4)  
Clinical 

N-stage
  0.024c

 � 0 15 (21) 67 (35)  
 � 1 32 (44) 79 (42)  
 � 2 22 (30) 39 (21)  
 � 3 4 (6) 3 (2)  
 � Nx 0 (0) 1 (0.5)  
TRG   1.00d

 � 1 16 (22) 40 (21)  
 � 2 19 (26) 54 (29)  
 � 3 23 (32) 52 (28)  
 � 4-5 15 (20) 43 (23)  

Continuous values are median [interquartile range] and categorical values are 
n (%) unless denoted otherwise. Numbers may not add up to 100% due to 
rounding.
Bold text denotes P < 0.05.
nCRT, neoadjuvant chemoradiotherapy; TRG, tumour regression grade.
aMann–Whitney U test (continuous variables) or chi-squared test (categorical 
variables).
bChi-squared test cT1-2 versus cT3-4a.
cChi-squared test cN0/cNx versus cN+.
dChi-squared test TRG 1 versus TRG 2-3-4.
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PET/CT has been shown inaccurate for distinction 
between residual tumour and inflammation at the pri-
mary tumour site at 12 weeks after nCRT. Radiomics was 
expected to capture more complex information within 
the image, for example, reflecting underlying biology. 
Such information did not appear to be retrievable from 
the investigated imaging dataset.

A strength of this study is the homogeneous multicentre 
external validation cohort collected from two prospective 
trials [3,5]. This results in similar scanning protocols and 
application of the same nCRT regimen across the differ-
ent institutions. Moreover, quality assessment of tumour 
delineations was performed with the author of the previous 
article, and radiomic feature calculation method was kept 
the same as in the development cohort [7]. Furthermore, 

another radiomic workflow was demonstrated for model 
extension (Supplemental Appendix 1, Supplemental dig-
ital content 1, http://links.lww.com/NMC/A248) [18], since 
there might not be a single correct modelling approach 
[25]. This workflow has the advantage that feature pre-se-
lection is more intuitive to understand and is best used 
when an independent validation set is available.

The limited generalisability of the published models 
is probably due to overfitting to the derivation sample. 
Another possible cause for decreased performance in the 
validation cohort is unintentional dependency of radi-
omic features on scanning protocols, scanner models (see 
Supplemental Figure 2, Supplemental digital content 
1, http://links.lww.com/NMC/A248) and tumour delinea-
tion methods [15]. Heterogeneity in the assessment of 

Fig. 3

Boxplots for visual comparison of the six radiomic features versus the outcome TRG in the external validation cohort. NS, non-significant; TRG, 
tumour regression grade. *P < 0.05.
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cT stage across different hospitals might also have nega-
tively impacted generalisability of the models. The var-
iable cT stage had a relatively large contribution to the 
predictions of the six published models (regression coef-
ficient between −2.7 and −2.9) [7].

There are several other limitations of this study. The 
external validation cohort included patients who under-
went 18F-FDG PET/CT between 6 and 12 weeks after 
nCRT, whereas for the development cohort the timing 
was between 6 and 8 weeks after nCRT. Radiomic fea-
ture values might therefore have been less alike between 
the cohorts because of differences in post--radiotherapy 
inflammatory effects in these time periods. Unfortunately 
it was not informative to validate the models on a sub-
group of patients who underwent a 18F-FDG PET/CT 
scan until 8 weeks after nCRT. Because of the timing of 
the 18F-FDG PET/CT within clinical response evalua-
tions of the pre-SANO trial [5] and SANO trial [3], this 
would result in a cohort comprising solely patients with 
residual tumour. As such, model performance cannot be 
compared between such a subgroup and the full exter-
nal validation cohort. With regard to model updating, a 
limitation is that other classes of features, such as wave-
let features, were not considered because these were not 
available from the previous study [7]. Moreover, non-lin-
ear associations may exist between predictors and the 
outcome of interest. We explored a random forest model 
for this purpose, but this model easily overfitted (data not 
shown). A larger sample size would enable further inves-
tigation of non-linear relations. Furthermore, despite the 
use of data from prospective trials, it is plausible that there 
are variations in application of nCRT, scanning, surgery, 
and outcome assessment that we could not correct for.

Even though the results of the present study do not 
improve decision-making after nCRT, they underline 
the importance of external validation. External valida-
tion is warranted to assess whether a developed predic-
tion model applies outside the development setting. The 
current findings may help to inform the design of future 
studies to make response evaluations after nCRT more 
accurate and less invasive [26]. It might be worthwhile 
to explore a multi-omics approach involving imaging 
modalities more suitable for tumour recognition (e.g. 
endoscopy and diagnostic CT) in combination with other 
biomarkers.

In conclusion, this external validation study in a multi-
centre external validation cohort could not replicate the 
high predictive performance of radiomic models incor-
porating post-treatment 18F-FDG PET features and cT 
stage. Model extension based on the combined cohorts 
was not successful either. The application of radiomics 
to 18F-FDG PET/CT scans up to 12 weeks after nCRT 
is of no help in decision-making in individual patients 
regarding the choice for active surveillance after nCRT. 
The results underline the necessity to use homogenous Ta
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imaging datasets during model development and to 
externally validate a predictive model before it can be 
applied in broad clinical use.
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Clinical variables TRG 2-3-4 0.71 (0.73) 0.64 90 40 85 52 79
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