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AIM: To investigate the feasibility of using deep learning (DL) to differentiate normal from
abnormal (or scarred) kidneys using technetium-99m dimercaptosuccinic acid (99mTc-DMSA)
single-photon-emission computed tomography (SPECT) in paediatric patients.
MATERIAL AND METHODS: Three hundred and one 99mTc-DMSA renal SPECT examinations

were reviewed retrospectively. The 301 patients were split randomly into 261, 20, and 20 for
training, validation, and testing data, respectively. The DL model was trained using three-
dimensional (3D) SPECT images, two-dimensional (2D) maximum intensity projections (MIPs),
and 2.5-dimensional (2.5D) MIPs (i.e., transverse, sagittal, and coronal views). Each DL model
was trained to determine renal SPECT images into either normal or abnormal. Consensus reading
results by two nuclear medicine physicians served as the reference standard.
RESULTS: The DL model trained by 2.5D MIPs outperformed that trained by either 3D SPECT

images or 2D MIPs. The accuracy, sensitivity, and specificity of the 2.5D model for the differ-
entiation between normal and abnormal kidneys were 92.5%, 90% and 95%, respectively.
CONCLUSION: The experimental results suggest that DL has the potential to differentiate

normal from abnormal kidneys in children using 99mTc-DMSA SPECT imaging.
� 2023 Published by Elsevier Ltd on behalf of The Royal College of Radiologists.
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Introduction

Single-photon-emission computed tomography (SPECT)
with technetium-99m dimercaptosuccinic acid (99mTc-
DMSA) is a commonly used imaging method for diagnosing
kidney diseases such as kidney transplantation, renal scars,
renal fibrosis and acute pyelonephritis.1e5 It is also widely
used in paediatric patients for evaluating renal scars, acute
pyelonephritis, and renal cortical fibrosis for their small-
sized kidneys.3e5 Additionally, early detection of signifi-
cant cortical defects might prompt surgical decisions in
cases of high-grade vesicoureteral reflux. In general, nuclear
medicine physicians performed image interpretation
through visual reading on the three-dimensional (3D)
SPECT images, displayed as transaxial, coronal, and sagittal
views; however, the experience of nuclear medicine phy-
sicians may lead to different diagnostic results. One previ-
ous study reported that the interobserver agreement was
not very high (around 73%) in the interpretation of 99mTc-
DMSA renal SPECT imaging.6 In addition, Cohen’s kappa
coefficient showed moderate agreement (around 0.59) be-
tween observers.6 An automated computer-aided diag-
nostic system that improves interobserver agreement in the
differentiation between normal and abnormal kidneys in
terms of presence of cortical defects may be of clinical
interest.

Recently, deep learning (DL) has been applied in many
medical imaging applications.7,8 For example, DL in com-
bination with SPECT myocardial perfusion imaging was
developed to diagnose coronary artery diseases.9,10 More-
over, DL with SPECT images had shown promising results
for the diagnosis of thyroid diseases.11 Similarly, DL was
proposed to detect metastatic and arthritic lesions in SPECT
bone scintigraphy.12 Similarly, DL was applied to detect
metastatic lymph node for thyroid cancer on 131I post-
ablation whole-body planar imaging.13 More importantly,
one previous study showed that a deep convolutional
neural network (CNN) model trained by [123I]N-u-fluo-
ropropyl-2b-carbomethoxy-3b-(4-iodophenyl)nortropane
([123I]FP-CIT) SPECT images could be robust with respect to
different camera settings and scan-specific image charac-
teristics.14 Although further validation is required, DL has
the potential to assist nuclear medicine physicians in the
diagnosis of various diseases.

To the authors’ knowledge, there is only one study that
has used an artificial neural network to classify renal 99mTc-
DMSA planar images.15 No study has evaluated the diag-
nostic accuracy of depicting paediatric renal cortical defects
using 99mTc-DMSA SPECT and CNN. The aim of the present
study was therefore to investigate the feasibility of using DL
to differentiate normal and abnormal (or scarred) kidneys
from 99mTc-DMSA SPECT in paediatric patients. Consensus
reading results by two nuclear medicine physicians served
as the reference standard. In particular, the DL model was
trained using different datasets including 3D SPECT images,
two-dimensional (2D) maximum intensity projections
(MIPs), and 2.5-dimensional (2.5D) MIPs (i.e., transverse,
sagittal, and coronal views). Different data augmentation
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methods were used to reduce overfitting. A dataset con-
sisting of a group of paediatric 99mTc-DMSA SPECT images
was used to assess the performance of the DL-based model.

Materials and methods

DL model for kidney differentiation

In this study, the DL mode used for differentiating
normal from abnormal kidneys was based on a CNN. In
brief, a CNN typically consists of four different layers: the
convolutional layer, the pooling layer, the activation layer,
and the fully-connected layer. The convolutional layer is
used to extract features from the input images. The number
of convolutional filters and kernel size were determined in
each convolutional layer. The pooling layer is used to reduce
the dimension of the extracted features. For example, the
maximum pooling layer reports the maximum value for
patches of a feature map and produces a down-sampled
feature map. The activation layer is a mathematical func-
tion that transfers the values from one layer to another. It
adds a non-linear transformation to the CNN network. The
fully-connected layer maps the extracted features into the
final output by multiplying the input with a weight matrix
and adding a bias vector.

During the training process, the final output was fed into
a feed-forward neural network, and the weights of the
neural network were updated via back propagation. Over a
series of epochs, the DL model learns to map the input data
into the target. More details about the concept of CNN can
be found in Alzubaidi et al.16

Fig 1 shows the flow chart of the DL training models. The
DL model was trained using three different input data types
including 3D SPECT images, 2D MIPs, and 2.5D MIPs (i.e.
transverse, sagittal, and coronal views). In particular, the
2.5D training method concatenated all features obtained
from three independent CNN models. For each input data
type, image features extracted from the CNN model were
fed into a 512-unit dense fully connected layer followed by a
dropout layer with a rate equal to 0.5. The final output layer
was a dense layer with one node and a sigmoid activation.
The DL model was trained to predict a value ranging from
0 (i.e., normal) to 1 (i.e., abnormal). Note that the input data
contained one kidney. In other words, the right and left
kidneys were considered as two different datasets.

As shown in Fig 2, the CNN model used in this study
consisted of several convolutional layers, batch normal-
isation layers, rectified linear unit (ReLu) activation layers,
and max-pooling layers. Three skip connections (i.e. Add)
were also added that were designed to perform an
element-wise addition. The final layer of the CNN model
was a global average pooling layer. For both the 2D and
2.5D data types, the kernel size of each convolutional (and
pooling) layer was 3 � 3. For the 3D data type, the kernel
size of each convolutional (and pooling) layer was 3 � 3 �
3. The number of filters was set to 32, 64, 64, 128, 128, 256,
and 256 for the first to the seventh convolutional layers,
respectively.
of Health and Social Security de ClinicalKey.es por Elsevier en agosto 10, 
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Figure 1 Flow charts of training DL models.
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Patient data

The present study retrospectively recruited 301 paedi-
atric patients with at least one episode of prior urinary tract
infection who underwent renal 99mTc-DMSA SPECT
Figure 2 The architecture of the CNN model. The number on the top
of each convolutional layer is the number of filters.
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between January 2013 and April 2020. The studied popu-
lation comprised of 150 male patients aged 0.2e17 years
(mean age, 3.5 years) and 151 female patients aged 0.3e24
years (mean age, 4.0 years). Only one patient was >18 years
but still attended the paediatric department. The institu-
tional review board approved this study and informed
consent was waived. All DICOM images were de-identified
before using them. For the scan, each patient received an
intravenous injection of 99mTc-DMSA (dose range, 18.5e370
MBq) with 1.85 MBq/kg body weight and minimum dose of
18.5 MBq. Image acquisition was started approximately 3 h
after the injection. Each 99mTc-DMSA SPECT examination
was performed with a dual-head gamma camera (ECAM,
Siemens, Germany) and a low-energy high-resolution
collimator. The data acquisition parameters were as follows:
128 � 128 matrix, zoom factor of two, 1.748-mm pixel, 180�

rotation per detector, 60 views per detector (total of 120
views) with a 5-second acquisition per view (total imaging
time, 30 minutes ¼ 5 minutes per cycle � 6 cycles), and
non-circular orbit in continuous acquisition. All SPECT im-
ages were reconstructed using the 2D ordered-subsets
expectation-maximisation algorithm with eight subsets
and six iterations. All reconstructed SPECT images were
then smoothed using a Gaussian filter of 6-mm full width at
half maximum. Finally, the 3D renal SPECT images of each
patient were examined visually by two experienced nuclear
medicine physicians in consensus, which served as the
ground truth, and each kidney was classified as either
ary of Health and Social Security de ClinicalKey.es por Elsevier en agosto 10, 
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normal or abnormal. A kidney was designated as abnormal
if presence of any cortical defect.
Data pre-processing and model training

A total of 301 patients were split randomly into 261 for
training (i.e., 520 kidneys, two kidneys were excluded), 20
for validation (i.e., 40 kidneys), and 20 for testing (i.e., 40
kidneys). Because the number of sections varied between
patients, each 3D SPECT dataset was zero padded to 128
sections. Then, each 3D SPECT dataset was normalised by its
maximum value. Finally, the 3D SPECT images containing
the kidney were split manually into the left and right side,
and the individual left and right kidneys were used as input
data.

In the present study, each DL model was trained using a
binary cross-entropy loss function. The Adam optimisation
algorithm was used to minimise the loss function. The
learning rate was 10�4. The hyper-parameters b 1 and b2
were set to 0.9 and 0.999, respectively. The number of
epochs was set to 300, and the batch size was 4. During the
training phase, the model with the highest accuracy over all
validation datasets was selected from the epoch. Each DL
model was implemented with TensorFlow 2.8.0 and ran on
a NVIDIA GeForce RTX 3090 GPU.

To reduce the overfitting problem, data augmentation
was performed that synthesised new data from the existing
training data. Specifically, the training data were
augmented through random flip (both horizontal and ver-
tical), translation (� 25 pixels), rotation (� 90o), and zoom
(20% zoom-in and -out). Note that the data augmentation
technique was implemented only in the training process.
For the training data (i.e., 520 kidneys), the number of
normal kidneys was 368, and the number of abnormal
kidneys was 152. To deal with the class imbalance problem,
class weights (i.e., the total number of cases divided by the
total number of cases in that class) were added to the loss
function. Note that both validation and testing datasets had
20 patients. Among these patients, five patients had no
defect in both kidneys, five patients had defects in both
kidneys, five patients had no defect in the right kidney (but
defects in the left kidney), and five patients had no defect in
the left kidney (but defects in the right kidney). In other
words, 20 kidneys were labelled as normal, and 20 kidneys
were labelled as abnormal.
Figure 3 ROC curves of the DL models trained by 3D images, 2.5D
MIPs, 2D (coronal) MIPs, 2D (sagittal) MIPs, and 2D (transverse) MIPs.
The circle marker denotes the optimal point.
Evaluation metrics

To evaluate model performance on the testing dataset, a
receiver operating characteristic (ROC) curve was plotted
that was used to choose the optimal threshold of each
trained DLmodel. Then, the accuracy, sensitivity, specificity,
precision, and F1 score at the optimal threshold were
calculated.

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

(1)
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Sensitivity ¼ TP
TPþ FN

(2)

Specifity ¼ TN
TNþ FP

(3)

Precision ¼ TP
TPþ FP

(4)

F1 score ¼ 2TP
2TPþ FPþ FN

(5)

where TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative, respectively. Cohen’s
kappa coefficient was also calculated, which was a measure
of how closely the SPECT images classified by the DL model
matched the results labelled by the two nuclear medicine
physicians.

Results

Fig 3 shows ROC curves of the DL models trained by 3D,
2.5D, 2D (coronal), 2D (sagittal), and 2D (transverse) im-
ages. The area under curve was 0.91, 0.94, 0.92, 0.87, and
0.92 for 3D, 2.5D, 2D (coronal), 2D (sagittal), and 2D
(transverse) models, respectively. The results indicate that
the 2.5D model exhibited better differentiation perfor-
mance than the other models. Table 1 summarises the
diagnostic accuracy, sensitivity, specificity, precision, and
F1-score of five DL models for differentiating between
normal and abnormal kidneys. The DL model trained by
2.5D MIPs outperformed that trained by 3D SPECT images
or 2D MIPs. Fig 4 shows the confusion matrix of differen-
tiation using the 2.5D model. Only three kidneys (i.e., two
FN and one FP cases) were categorised incorrectly by the
2.5D model. Fig 5 shows the coronal MIPs of these three
of Health and Social Security de ClinicalKey.es por Elsevier en agosto 10, 
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Table 1
Diagnostic accuracy, sensitivity, specificity, precision, and F1-score of 5 deep-
learning (DL) models for differentiating normal and abnormal kidneys.

Input data types Accuracy Sensitivity Specificity Precision F1-score

3D images 0.850 0.900 0.800 0.818 0.857
2.5D MIPs 0.925 0.900 0.950 0.947 0.923
2D MIP (coronal) 0.850 0.750 0.950 0.938 0.833
2D MIP (sagittal) 0.850 0.800 0.900 0.889 0.842
2D MIP (transaxial) 0.850 0.900 0.800 0.818 0.857

The 5 DL models were trained by five different input data types.
MIP, maximum intensity projection.

Figure 4 Confusion matrix of differentiation using the 2.5D DL
model.
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false-predicted kidneys. Cohen’s kappa coefficient was 0.70,
0.85, 0.70, 0.70, and 0.70 for 3D, 2.5D, 2D (coronal), 2D
(sagittal), and 2D (transverse) models, respectively.

Discussion

The present study applied DL to the automatic differen-
tiation of paediatric normal from abnormal kidneys from
99mTc-DMSA SPECT images. The 2.5D model outperformed
both 2D and 3D models in terms of accuracy, precision, and
F1-score. DL in combination with 2.5D MIPs achieved 92.5%
accuracy, 90% sensitivity, and 95% specificity in the
Figure 5 Coronal MIPs of the three false-predicted cases predicted by
considered by expert consensus reading and FP: DL model erroneously c
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differentiation between normal and abnormal kidneys.
Moreover, a kappa coefficient of 0.85 obtained from the
2.5D model indicated that DL could provide an almost
perfect agreement with the visual reading results of the two
experienced nuclear medicine physicians. These pre-
liminary results suggest that DLmay be used as a computer-
aided diagnosis system that assists less-experienced nu-
clear medicine physicians in the diagnosis of renal cortical
defects.

To the authors’ knowledge, this is the first study using DL
with 99mTc-DMSA SPECT images to evaluate differentiating
normal from abnormal kidneys; however, a previous study
used an artificial neural network to create an automatic
classifier system for renal 99mTc-DMSA planar images.15

Based on the pre-defined heuristic features extracted from
posterior images, the artificial neural network could achieve
a differentiation accuracy of 95.9%.15 In contrast, the pro-
posed DL method could achieve similar accuracy (92.5%)
without manual feature selection. In addition, the proposed
DL method was designed to process one single kidney. This
is different from the previous study that required heuristic
features (e.g., perimeter difference, counts difference, and
area difference) obtained from both right and left kidneys.

One interesting finding of the present study was that the
3D model did not show better differentiation performance
than the other 2D models. One possible reason is that only
some SPECT sections reflect renal cortical function impair-
ment. In fact, each 3D SPECT dataset was zero-padded along
the transverse axis to the size of 128 sections. SPECT sec-
tions that do not show impaired renal function may affect
the differentiation performance. Moreover, the 3D CNN
model used in this study may be too simple. Further
improvement may be obtained by using important SPECT
image sections or more complex 3D CNN models.

Despite promising results, this study has several limita-
tions. First, the number of patients used in this study was
smaller than that used in previous studies.9e14 Further
validation using large datasets is required. Moreover, only
paediatric patients were recruited; however, the proposed
method should be applicable to adults including renal
transplant donor candidates.

Note that the DL model trained by small datasets may be
overfitted. The overfitting problem can be reduced by using
the data augmentation technique described in Section 2.2.
the 2.5D model. FN: DL model failed to recognise abnormal kidney
onsidered the presence of abnormal kidney function.
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Second, the ground truth used for training the DL model
was based on the visual reading results of the two experi-
enced nuclear medicine physicians with consensus. There
might be a chance that the two nuclear medicine physicians
incorrectly categorised normal and abnormal kidneys. This
represents the clinical scenario and it would be clinically
infeasible to obtain pathological proof for each cortical
defect. As a result, it is difficult to explain the clinical rele-
vance of false findings shown in Fig 5. The present study can
only demonstrate the discrepancy between DL model and
expert consensus reading. Any potential clinical impact may
require further testing in a larger scaled and prospective
study. Third, the CNN model used in the present study may
not be optimal. Well-known classification models such as
DenseNet17 and InceptionV318 were not used in the present
study. The reason is that these well-known models are
designed to classify natural colour images. Compared to
natural images, SPECT images are grey-scale and less com-
plex. It may be worthwhile testing advanced DL techniques
such as label smoothing,19 generative adversarial network
based data augmentation,20 and attention mechanism.21

Moreover, the pre-defined heuristic features15 and perti-
nent clinical information10 we could be integrated into the
CNN model.

In conclusion, present study investigated the feasibility
of using DL to differentiate between normal and abnormal
(or scarred) kidneys from 99mTc-DMSA SPECT in paediatric
patients. The DL model was trained using different data
types including 3D SPECT images, 2D MIPs, and 2.5D MIPs.
Each DL model was trained to determine renal SPECT im-
ages into normal or abnormal. Compared to 3D SPECT im-
ages and 2D MIPs, 2.5D MIPs had the best performance in
the differentiation between normal and abnormal kidneys.
The diagnostic accuracy obtained from the 2.5D model was
92.5%. These preliminary results suggest that DL has the
potential to differentiate normal from abnormal kidneys in
paediatric patients using 99mTc-DMSA SPECT imaging.
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