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Objective: To test the correlation of ejection fraction (EF) estimated by a deep-learning-based, automated algorithm (Auto EF) versus an EF

estimated by Simpson’s method.

Design: A prospective observational study.

Setting: A single-center study at the Hospital of the University of Pennsylvania.

Participants: Study participants were �18 years of age and scheduled to undergo valve, aortic, coronary artery bypass graft, heart, or lung trans-
plant surgery.

Interventions: This noninterventional study involved acquiring apical 4-chamber transthoracic echocardiographic clips using the Philips hand-

held ultrasound device, Lumify.

Measurements and Main Results: In the primary analysis of 54 clips, compared to Simpson’s method for EF estimation, bias was similar for

Auto EF (�10.17%) and the experienced reader-estimated EF (�9.82%), but the correlation was lower for Auto EF (r = 0.56) than the experi-

enced reader-estimated EF (r = 0.80). In the secondary analyses, the correlation between EF estimated by Simpson’s method and Auto EF

increased when applied to 27 acquisitions classified as adequate (r = 0.86), but decreased when applied to 27 acquisitions classified as inadequate

(r = 0.46).

Conclusions: Applied to acquisitions of adequate image quality, Auto EF produced a numerical EF estimate equivalent to Simpson’s method.

However, when applied to acquisitions of inadequate image quality, discrepancies arose between EF estimated by Auto EF and Simpson’s

method. Visual EF estimates by experienced readers correlated highly with Simpson’s method in both variable and inadequate imaging condi-

tions, emphasizing its enduring clinical utility.
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IN RECENT YEARS, point-of-care (POC) echocardiogra-

phy has become a ubiquitous tool across nearly all medical

specialties.1-4 Despite the limitations of a load-dependent mea-

sure of left ventricular (LV) systolic function, ejection fraction

(EF) remains the primary, guideline-recommended parameter

for quantification of LV systolic function.5 Consequently,

timely and accurate LV systolic function assessment is funda-

mental to bedside POC echocardiography.3,5

With advancements in both imaging technology and computa-

tional power, research on deep-learning applications to echocardi-

ography has the potential to improve disease detection, increase

reading efficiency, and reduce interobserver variability in the

interpretation of echocardiographic images.6-12 This previous

work has centered on analyzing echocardiographic images

acquired under optimal imaging conditions typical of an outpa-

tient laboratory setting.6-12 However, the performance of these

algorithms under suboptimal imaging conditions (eg, supine posi-

tioning, positive-pressure ventilation, and obesity)13,14 typically

encountered in the perioperative setting is largely unknown.

Thus, the goal of this study was to pragmatically test the

performance of EF estimates automatically computed by a

novel artificial intelligence (AI) software called “Auto EF

Quantification” (Philips North America, Cambridge, MA) in a

preoperative clinical setting where suboptimal imaging condi-

tions are encountered regularly. This study tested the hypothe-

sis that the EF produced by Auto EF would correlate to EF

estimated by conventional echocardiographic techniques—

Simpson’s method and experienced visual estimate.
Methods

This blinded, prospective, observational study was preregis-

tered on clinicaltrials.gov before the initiation of any study-

related activities (NCT04943965). The trial protocol was

reviewed and approved by the University of Pennsylvania

Institutional Review Board (IRB). The trial was classified as a
Fig 1. Illustration of the fully automated endocardial border tracing over a single ca

(A) End-diastole and (B) end-systole. The corresponding cine loop is provided in m

resentative of the border tracing appearance seen in the upcoming product version o
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minimal-risk study by the IRB, given the nonrandomized, pro-

spective observational design. The investigation was designed to

compare 2 methods of EF estimation versus Simpson’s method

of disc manual reference. One method was Auto EF Quantifica-

tion software, and the second method was qualitative visual esti-

mates of EF by experienced echocardiographers.

Population

Study participants were �18 years of age and scheduled to

undergo valve, aortic, coronary artery bypass graft, heart, or

lung transplant surgery. Patients were excluded from the study

if they had documented persistent atrial fibrillation or flutter

and/or were unable to consent for themselves. Because this

study was classified as a minimal risk study by the University

of Pennsylvania IRB, study enrollment was initiated in the pre-

operative area immediately before surgery, and written consent

was obtained from all participants.
The Device and Auto EF Quantification Software

Originally developed as “LVivo” (DiA Imaging Analysis

Ltd, Be’er Sheva, Israel), the AI software program used in this

study (“Auto EF Quantification” or Auto EF) was licensed by

Philips and integrated into Philips Lumify handheld ultrasound

imaging system (Philips North America). Auto EF operates on

an apical 4-chamber (A4C) transthoracic echocardiographic

view. When Auto EF is initiated, the underlying algorithm

traces the endocardial border for all frames within the entire

input loop and produces an EF estimate for each recorded car-

diac beat within that acquisition. Then, the software automati-

cally presents the estimated EF results for the second cardiac

cycle unless there is only a single cardiac beat in each A4C

acquisition (Fig 1). A video corresponding to how Auto EF

appears on the Lumify tablet screen is illustrated in Supple-

mentary Video S1. The current study evaluated the capability
rdiac cycle captured within an apical 4-chamber, cine loop acquired by Lumify.

p4 format and Supplementary Video S1. The illustration shown here is not rep-

f automated ejection fraction quantification software.
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of Auto EF as a fully automated tool with no manual endocar-

dial border adjustments.

Study Design

A4C echocardiographic acquisitions were obtained prospec-

tively by the principal investigator (PI) (E.M.) using the hand-

held Lumify device. The PI is certified by the National Board of

Echocardiography and is an experienced POC echocardiographer.

Images were acquired during the presurgical window (before and

after induction of anesthesia) to obtain echocardiographic clips

on a heterogeneous cardiac surgery patient population under

varying hemodynamic and challenging imaging conditions. A

summary of these imaging conditions is in Supplementary Table

S1. Auto EF was not applied in real-time to keep the PI blinded

to the EF estimates by the Auto EF software.

Simpson’s Reference Method

Given its strong correlation with both visual and automated

EF estimates,8 the reference EF was defined as the average of

2 modified Simpson’s monoplane method of discs applied to a

single A4C acquisition.5 Simpon’s method of discs involves

tracing the LV cavity at end-diastole and end-systole, and was

completed by the PI using existing Philips TOMTEC Software

(TOMTEC Imaging Systems, Unterschliessheim, Germany).

Because the 2 Simpson’s monoplane EF estimates used the

same A4C echocardiographic acquisitions and the same car-

diac cycle as Auto EF, they were conducted 1 month apart to

reduce potential unconscious bias from the PI.
Fig 2. Examples of 2 apical 4-chamber transthoracic acquisitions. (A) An example o

myocardium clearly captured, sharp endocardial border, and minimal reverberation

did not adhere to imaging quality adequacy criteria (ie, <80% of myocardium cl

reverberation artifact obscuring the anterolateral myocardial wall) and was classifie

Supplementary Video S2 (corresponding to panel A) and S3 (corresponding to pane
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Visual EF Estimates by Cardiac Anesthesiologists

As a parallel analysis to the Auto EF versus Simpson’s

method, the study design involved comparing the bias and

accuracy of the mean visual estimate of EF by 17 National

Board of Echocardiography-certified (or testamured)15 experi-

enced echocardiographic readers versus the same Simpson’s

reference method. The protocol for visual estimation of EF by

the 17 experienced echocardiographers involved each physi-

cian viewing the A4C POC echocardiographic clips individu-

ally and assigning a numerical value for EF based on that

single A4C echocardiographic clip.

Statistical Analysis

EF estimated by Auto EF versus Simpson’s method was

compared using the Pearson correlation coefficient (r) set to

0.5, a type I (alpha) error of 0.05, and a type II (beta) error of

0.20. Using these parameters, the required sample size for this

study was 29 subjects.16 This was consistent with previous

studies that compared 2 different echocardiographic imaging

modalities, with sample sizes ranging from 17-to-31 sub-

jects.17-19 Thus, the goal enrollment was set at 35 subjects—a

20% increase over n = 29—as a contingency for potential lost

data or inadequate imaging.

Baseline characteristics of the study cohort were analyzed

using standard descriptive statistics, with categorical data pre-

sented as n (%) and continuous data presented as mean (§SD).

For all analyses, the accuracy of the EF estimates produced by

Auto EF was compared to Simpson’s using linear regression
f an acquisition that adhered to imaging quality adequacy criteria (ie,>80% of

artifact) and was classified as adequate. (B) An example of an acquisition that

early captured, hazy and poor endocardial border demarcation, and excessive

d as inadequate. The corresponding cine clips are provided in mp4 format and

l B).
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Table 1

Patient Characteristics (n = 35)

Characteristics Values

Demographics

Age, mean § SD, y 58.7 § 13.3

Male sex, n (%) 24 (68.6)

Height, mean (§SD), cm 172.8 (§9.6)

Weight, mean (§SD), kg 85.5 (§18.6)

Medical history, n (%)

Aortic aneurysm 10 (28.6)

Aortic dissection 1 (2.9)

End-stage cardiomyopathy 1 (2.9)

COPD 2 (5.7)

End-stage interstitial lung disease 1 (2.9)

Obesity 12 (34.3)

Pulmonary hypertension 4 (11.4)

Echocardiographic parameters (OR TEE)

EF, mean (§SD), %* 56.2 §13.5

Aortic regurgitation �moderate, n (%) 9 (25.7)

Aortic stenosis �moderate, n (%) 7 (20.0)

Mitral regurgitation �moderate, n (%) 8 (22.9)

Mitral stenosis �moderate, n (%) 2 (5.7)

Tricuspid regurgitation �moderate, n (%) 2 (5.7)

RV dilation, n (%) 8 (22.9)

Surgical procedure, n (%)

Ascending aorta replacement 10 (28.6)

Ascending aorta and hemiarch replacement 5 (14.3)

Tricuspid (repair or replacement) 1 (2.9)

Ross procedure 2 (5.7)

CABG 7 (20.0)

Lung transplant 1 (2.9)

Heart transplant 1 (2.9)

Aortic valve replacement 7 (20.0)

Mitral valve replacement 2 (5.7)

Mitral valve repair 4 (11.4)

Abbreviations: CABG, coronary artery bypass graft; COPD, chronic

obstructive pulmonary disease; EF, ejection fraction; OR, operating room; RV,

right ventricle; TEE, transesophageal echocardiography.

* Please refer to Supplementary Fig S1 to view the EF distribution of the

cohort.
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and the Pearson correlation coefficient. Agreement between

EF estimates by Auto EF versus Simpson’s and the mean of 17

experienced readers versus Simpson’s was analyzed by

Bland�Altman analyses.20 The 95% limits of agreement

(LOA) were calculated (§1.9 SD), and the mean difference

(eg, bias) was calculated. Interobserver variability between

Auto EF and the 17 experienced readers was calculated using

the intraclass correlation coefficient (ICC). A secondary post

hoc analysis was conducted on 2 distinct subsets of the 54 clips

divided into 2 groups by study personnel blinded to the find-

ings of the Auto EF analysis based on a set of imaging ade-

quacy criteria (Fig 2, A; Supplementary Video S2, A)

illustrates an example of an adequate acquisition (Fig 2, B;

Supplementary Video S2, B) illustrates an example of an inad-

equate acquisition. Details on the criteria for adequacy classifi-

cation are in Supplementary Table S2. Basic statistics were

conducted using STATA 17.0 (StataCorp, LLC, College Sta-

tion, TX). Linear regression, Bland�Altman, and ICC statis-

tics were conducted using Python (Open Source, Python

Software Foundation).

Results

The study population included 35 patients. Overall, the

mean age was 58.7 years, 68.6% were male sex, 31.4% were

female sex, and the mean body mass index was 28.6 kg/m2.

Table 1 summarizes the demographic and clinical data of the

study population. Auto EF Quantification reported failures in

the selected acquisitions in 2 out of 30 subjects (ie, producing

a numerical EF estimate in 28 of the 30 subjects); a feasibility

rate of 93%. Of those 28 patients, 54 selected A4C clips (2 per

patient for 26 patients and 1 per patient for 2 patients) returned

successful Auto EF Quantification results and were used for

subsequent analysis.

Interobserver Variability Analysis

Interobserver variability was tested by plotting the range of

estimated EF values among the 17 experienced readers. In 53

of 54 clips (98%), Auto EF estimates of EF fell within the

range of the 17 visual estimates of EF (Fig 3). When consider-

ing Auto EF and the 17 visual estimates, the ICC was 0.60

(95% CI: 0.50-0.70), indicating moderate agreement.21 The

ICC did not significantly change when computed from only

the 17 visual EF estimates (ICC = 0.61 [95% CI: 0.51-0.71]).

Primary Analysis

The primary analysis of the 54 clips compared the correla-

tion and bias between EF estimated by (1) Auto EF versus

Simpson’s, and (2) the mean of 17 experienced visual esti-

mates versus Simpson’s. Compared to Simpson’s, Auto EF

demonstrated moderate bias22 (�10.17% [SD = 11.04%];

lower LOA: �31.82% and upper LOA: 11.46%) and modest

correlation23 (r = 0.56 [95% CI: 0.34-0.72]; p < 0.0001)

(Fig 4, A and B). Compared to EF estimated by the Simpson’s

method, the mean of 17 visual estimates demonstrated
Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of
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moderate bias22 (�9.82% [SD = 8.14%]; lower LOA:

�25.77% and upper LOA: 6.13%) and strong correlation23

(r = 0.80 [95% CI: 0.68-0.88]; p < 0.0001) (Fig 4, C and D).

Secondary Analyses

A secondary, post hoc analysis was undertaken to explore

the modest correlation between the EF estimated by Simpson’s

versus Auto EF by dividing the 54 A4C clips into “adequate”

and “inadequate” image quality cohorts based on criteria

described in Supplementary Table S2. Bland�Altman and

Linear regression analyses were repeated on the adequate and

inadequate subgroups.

Analysis: Adequate Subgroup

Among the 27 adequate A4C clips, compared to EF esti-

mated by Simpson’s, Auto EF demonstrated low bias22

(�3.57% [SD = 6.72%]; lower LOA: �16.74% and upper

LOA: 9.60%) and strong correlation23 (r = 0.86 [95% CI:
 Health and Social Security de ClinicalKey.es por Elsevier en abril 19, 2024. 
ación. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.



Fig 3. Data visualization of the ejection fraction (EF) estimates (y-axis) for all 54 cine clips (x-axis). The visual EF estimates (17 values for each of the 54 cine

clips analyzed) are plotted as a range of values (light green, shaded bar). The automated EF estimates (1 value for each of the 54 cine clips analyzed) are plotted

as a single value (red line, single dots). Automated EF produced numerical EF estimates that fell within the range of the EF estimated visually by 17 blinded expe-

rienced echocardiographers in 53 of 54 (98%) of the cine clips. Auto EF, automated ejection fraction.
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0.71-0.93]; p < 0.0001) (Fig 5, A and B). Among those same

27 adequate A4C clips, compared to EF estimated by

Simpson’s, the mean of 17 visual estimates demonstrated mod-

erate bias22 (�6.39% [SD = 6.88%]; lower LOA: �19.89%

and upper LOA: 7.10%) and a strong correlation23 (r = 0.88

[95% CI: 0.75-0.94]; p < 0.0001) (Fig 5, C and D).

Analysis: Inadequate Subgroup

Among the 27 inadequate A4C clips, EF estimated by

Simpson’s, Auto EF demonstrated high bias22 (�16.78%

[SD = 10.61%]; lower LOA: �37.58% and upper LOA:

4.01%) and fair correlation23 (r = 0.46 [95% CI: 0.10-0.72];

p = 0.02) (Fig 6, A and B]). Among those same 27 inadequate

A4C clips, compared to EF estimated by Simpson’s, the mean

of 17 visual estimates demonstrated high bias22 (�13.25%

[SD = 7.95%]; lower LOA: �28.83% and upper LOA: 2.34%)

and a strong correlation23 (r = 0.80 [95% CI: 0.61-0.91]; p <

0.0001) (Fig 6, C and D).

Discussion

This study aimed to test and validate the performance of

Auto EF as an AI-based, echocardiographic EF estimator in a

clinical setting. This type of pragmatic validation testing is

crucial to ensure these applications are used appropriately

when deployed into clinical practice. On the primary analysis

of 54 clips, compared to Simpson’s method for EF estimation,

bias was similar for Auto EF (�10.17%) and the experienced

reader-estimated EF (�9.82%), but the correlation was lower

for Auto EF (r = 0.56) than the experienced reader-estimated

EF (r = 0.80). Secondary analyses on clips classified as ade-

quate or inadequate indicated that the software is highly

dependent on image quality. For instance, among the subset of

27 echocardiographic clips with adequate cine loop quality,
Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of He
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Auto EF demonstrated a strong correlation (r = 0.86) to

Simpson’s method, which is comparable to existing work on

the accuracy of deep learning algorithm-based estimates of

EF.6,24,25 Conversely, among the subset of 27 echocardio-

graphic clips of inadequate quality, the correlation to

Simpson’s was lower for Auto EF (r = 0.46) than the mean

visual EF estimate by experienced readers (r = 0.81).

Findings from this study highlighted an important inade-

quacy of using Auto EF as a fully automated tool (ie, no man-

ual border adjustments by the user postanalysis). That is,

although Auto EF may be reliable in clinical environments

where there is a high likelihood of achieving adequate loop

quality (eg, outpatient setting with echocardiograms performed

by experienced transthoracic sonographers), Auto EF may not

be reliable in clinical environments where it is harder to con-

sistently acquire images with adequate loop quality (eg, peri-

operative or critical care setting with POC echocardiography

performed by non-sonographers with less transthoracic imag-

ing experience). If deployed in clinical environments in which

challenging imaging conditions are commonplace, manual

border adjustment or image adequacy screening may be

required for Auto EF to produce reliable EF estimates.

This work adds to the existing published research testing

both semiautomated (eg, manual endocardial border adjust-

ment permitted)26,27 and fully automated (eg, no manual endo-

cardial border adjustment)28,29 AI-based software tools for EF

estimation by POC echocardiography.26-29 The authors’ study

design and findings are most comparable to the 2 previous

studies of fully automated EF estimates.28,29 A 2021 investiga-

tion by Filipiak-Strzecka et al. tested the accuracy of EF esti-

mated automatically by LVivo versus a 3-dimensional

reference method applied to A4C images acquired using a

hand-held ultrasound device in 96 patients.28 In this study,

among images classified as “acceptable” or better, a very

strong (r = 0.92) correlation between EF estimated by Lvivo
alth and Social Security de ClinicalKey.es por Elsevier en abril 19, 2024. 
ón. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.



Fig 4. Bland�Altman (A and C) and linear regression (B and D) results for the primary analysis of 54 cine clips; Auto ejection fraction versus Simpson’s reference

method (top; A and B) and mean visual ejection fraction estimate from 17 experienced readers versus Simpson’s (bottom; C and D). Auto EF, automated ejection

fraction.
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versus the 3-dimensional reference method was reported.28

This result is only marginally higher than the finding of a very

strong correlation between Auto EF and Simpson’s method

(r = 0.86) for EF quantification among images classified as

“adequate.” Moreover, both studies observed comparable bias

between the automated EF estimate and the reference meth-

ods.28 An older 2008 investigation by Rahmouni and col-

leagues tested the performance of an AI-based automated EF

assessment software (Siemens Medical Solutions, Erlangen,

Germany) versus 2 different reference methods (expert visual

estimate and manual planimetry) applied to 2-dimensional

(2D), A4C transthoracic echocardiographic images.29 Fifteen

years later, the authors’ findings from the current study were

remarkably similar to the findings from this previous investiga-

tion. Both studies found a modest correlation between the EF
Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of
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estimated by Auto EF versus Simpson’s 2D reference method

(Rahmouni et al.: r = 0.6429 v this study: r = 0.56), both

observed a very strong correlation between EF estimated by

experienced readers versus Simpson’s 2D reference method

(Rahmouni et al.: r = 0.8629 v this study: r = 0.80), and both

observed narrower LOAs on Bland-Altman analysis with

experienced readers versus Simpson’s (Rahmouni et al.:

LOA = �10% to 22%29 v this study: LOA = �26% to 6%)

compared to Auto EF versus Simpson’s (Rahmouni et al.:

LOA = �19% to 33%29 v this study LOA: �32% to 11%).

Because the authors were interested in studying the perfor-

mance of Auto EF as a fully automated tool for estimating EF,

their findings did not compare well to the 2 previous semiauto-

mated studies that allowed for manual endocardial border

adjustment post hoc when comparing EF estimated
 Health and Social Security de ClinicalKey.es por Elsevier en abril 19, 2024. 
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Fig 5. Bland�Altman (A and C) and linear regression (B and D) results for the secondary analysis of the 27 cine clips classified as adequate: Auto ejection fraction

versus Simpson’s reference method (top; A and B) and mean visual ejection fraction estimate from 17 experienced readers versus Simpson’s (bottom; C and D).

Auto EF, automated ejection fraction.
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automatically versus various reference methods.26,27 Neverthe-

less, the authors’ secondary analysis of images classified as

adequate did agree with previous work published in 2015 by

Frederiksen and colleagues comparing semi-automated EF

software (GE Healthcare, Horton, Norway) versus a reference

method (Frederiksen et al.: r = 0.8226 v this study: r = 0.86). In

contrast, the authors’ fully automated method was not able to

reproduce the extremely strong correlation between EF esti-

mated by AI-learned EF assessment software against the fol-

lowing 3 different reference methods: (1) versus a 2D manual

planimetry reference (r = 0.98), (2) versus an experienced

readers-estimated EF (r = 0.96), and (3) versus a cardiac mag-

netic resonance imaging reference (r = 0.95), as reported by

Cannesson et al. in 2007.27 This discordant result was likely

due to the fact that 23% of the total analyzed cases in the
Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of He
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Cannesson study required manual editing by experts and were

acquired using a cart-based imaging system (Acuson Sequoia;

Siemens, Mountain View, CA).27

Limitations

The findings presented in this study must be interpreted with

awareness of its limitations. First, the small sample size used

for analysis (eg, 54 clips from n = 30 patients) with corre-

spondingly wide 95% CIs. Second, because all data acquisi-

tions were performed by a single operator, the findings cannot

be extrapolated to environments where acquisitions are per-

formed by multiple operators. Third, although the authors had

physically collected a substantial amount of data per patient,

they elected to use only a small subset of the data to compare
alth and Social Security de ClinicalKey.es por Elsevier en abril 19, 2024. 
ón. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.



Fig 6. Bland�Altman (A and C) and linear regression (B and D) results for the secondary analysis of the 27 cine clips classified as inadequate: automated ejection

fraction versus Simpson’s reference method (top; A and B) and mean visual EF estimate from 17 experienced readers versus Simpson’s (bottom; C and D). Auto

EF, automated ejection fraction.
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EF estimates from the same cardiac cycle to avoid the inevita-

ble variability of LVEF (as a load-dependent measure of sys-

tolic function) over time. Fourth, among the 30 selected

cardiac surgical patients, only 2 had an EF of <35%.

Consequently, the authors’ findings may not be generaliz-

able to patients with severely decreased cardiac function. Fifth,

the most significant limitation of this study (a limitation noted

in all 4 previously published, similarly designed studies)26-29

was that no true gold standard for EF (ie, a ground truth refer-

ence) was compared. For this study, the reference EF was cal-

culated by a single echocardiographer applying Simpson’s

method of disks at 2 time points with a 1-month timespan in

between measurements to limit bias. However, this reference

method for EF estimation is not considered to be a “ground

truth” for comparison. This lack of a “ground truth” reference
Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of
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EF limitation potentially could be addressed in future research

by the addition of multibeat averaging over a clinically mean-

ingful timespan.

Conclusions

Applied to acquisitions of adequate image quality, Auto EF

produced a numerical EF estimate equivalent to Simpson’s

method. However, when applied to acquisitions of inadequate

image quality, discrepancies arose between EF estimated by

Auto EF and Simpson’s method. Under variable or inadequate

imaging conditions, visual EF estimates by experienced read-

ers correlated highly with Simpson’s method. Therefore, the

use of Auto EF in a fully automated manner (ie, without the

manual border editing) is not recommended on
 Health and Social Security de ClinicalKey.es por Elsevier en abril 19, 2024. 
ación. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.
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echocardiographic clips of inadequate image quality. Contin-

ued work to improve deep learning applications to echocardi-

ography, such as loop quality feedback during image

acquisition, is critical for making objective, accurate, reliable,

and reproducible echocardiography-based assessments.
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