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A B S T R A C T   

Aim: To build a facial image database and to explore the diagnostic efficacy and influencing factors of the 
artificial intelligence-based facial recognition (AI-FR) system for multiple endocrine and metabolic syndromes. 
Methods: Individuals with multiple endocrine and metabolic syndromes and healthy controls were included from 
public literature and databases. In this facial image database, facial images and clinical data were collected for 
each participant and dFRI (disease facial recognition intensity) was calculated to quantify facial complexity of 
each syndrome. AI-FR diagnosis models were trained for each disease using three algorithms: support vector 
machine (SVM), principal component analysis k-nearest neighbor (PCA-KNN), and adaptive boosting (AdaBoost). 
Diagnostic performance was evaluated. Optimal efficacy was achieved as the best index among the three models. 
Effect factors of AI-FR diagnosis were explored with regression analysis. 
Results: 462 cases of 10 endocrine and metabolic syndromes and 2310 controls were included into the facial 
image database. The AI-FR diagnostic models showed diagnostic accuracies of 0.827–0.920 with SVM, 
0.766–0.890 with PCA-KNN, and 0.818–0.935 with AdaBoost. Higher dFRI was associated with higher optimal 
area under the curve (AUC) (P = 0.035). No significant correlation was observed between the sample size of the 
training set and diagnostic performance. 
Conclusions: A multi-ethnic, multi-regional, and multi-disease facial database for 10 endocrine and metabolic 
syndromes was built. AI-FR models displayed ideal diagnostic performance. dFRI proved associated with the 
diagnostic performance, suggesting inherent facial features might contribute to the performance of AI-FR models.   
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1. Introduction 

Many endocrine and metabolic syndromes are associated with spe
cific facial features, including wide ocular hypertelorism, triangular 
face, saddle nose, low-set ears, microtia, dental dysplasia, cleft lip, cleft 
palate, exophthalmos, and dermatologic manifestations [1,2]. The 
diagnosis of endocrine and metabolic syndromes requires a set of 
biochemical and even genetic tests, leading to a complex and 
time-consuming diagnosis process [3,4]. Additionally, the spectrum of 
endocrine and metabolic syndromes is diverse thus easily confused, 
delayed and error diagnoses are common. Endocrinologists, particularly 
junior or primary care physicians, face challenges in providing early 
identification and diagnosis to these patients, not to mention early 
intervention to improve prognosis. Therefore, there is an urgent need to 
investigate auxiliary diagnostic methods to help these doctors improve 
their diagnostic efficacy. 

Artificial intelligence (AI) has been widely applied in the analysis 
and identification of medical images, such as lung nodules [5], colon 
polyps [6], breast nodules [7], and ocular fundus [8]. In recent years, 
artificial intelligence-based facial recognition (AI-FR) technology also 
displayed ideal performance in the automatic detection of endocrine and 
metabolic syndromes and genetic disorders with distinct facial features 
[9], such as Cushing’s syndrome [10], acromegaly [11], Turner syn
drome [12,13], and De Lange’s syndrome [14]. Based on our previous 
meta-analysis on diagnostic accuracy of AI-FR system for endocrine and 
metabolic syndromes in 20 studies, we proposed facial recognition in
tensity (FRI), an index to describe facial complexity of a target disease. 
We also validated that FRI has an impact on the diagnostic performance 
of AI-FR. The adjustment of parameters in artificial intelligence tech
nology might help improve the diagnostic accuracy for diseases with 
lower FRI [15]. 

Though AI-FR-assisted systems have shown potentials in improving 
the diagnostic process of endocrine and metabolic syndromes, there is 
still a lack in exploring effect factors of AI-FR’s diagnostic performance 
with a real-world database [16,17]. Moreover, current diagnostic sys
tems mostly focus on a single disease in relatively limited population, to 
build a medical facial image database comprising of various endocrine 
and metabolic syndromes is in need. Therefore, the purpose of this study 
is to build such a facial image repository covering multiple diseases and 
participants from diverse races and regions. We also aim to establish an 
auxiliary AI-FR diagnostic system based on this database, to compare the 
performance of different machine learning algorithms, and to explore 
possible influencing factors of diagnostic efficacy. 

2. Methods 

2.1. Study design 

This study first included patients of endocrine and metabolic syn
dromes and healthy controls from public sources. A database was built 
to collect facial images and clinical data of all included participants. 
Based on the dataset in the database, AI-FR diagnosis models for endo
crine and metabolic syndromes were trained using three classical AI 
algorithms. Then diagnostic performance of the AI-FR models was 
evaluated and possible influencing factors were explored through 
regression analysis. 

2.2. Study population 

Participants of the disease group and the control group from diverse 
regions, races, and ages were included from data sources with public use 
permissions. The disease group was collected from peer-reviewed liter
ature, published books, and two medical image databases [Face2Gene 
Library (www.face2gene.com/lmd-library-london-medical-database 
-dysmorphology, accessed on February 25th, 2023) and Atlas of 
Human Malformations in Diverse Populations of the National Human 

Genome Research Institute [18] (research.nhgri.nih.gov/atlas, accessed 
on February 27th 2023)]. The control group was collected from the 
large-scale face dataset UTKFace (susanqq.github.io/UTKFace, accessed 
on March 1st 2023). 

Participants were included according to predefined criteria. For the 
disease group, patients were diagnosed according to the gold standard in 
the guideline or consensus of the endocrine and metabolic syndrome. 
For the control group, participants were from healthy population and 
have not been diagnosed with any endocrine or metabolic syndrome. 

The exclusion criteria were (1) Unreliable or unpermitted data 
sources; (2) Lack of diagnosis confirmed by gold standard methods; (3) 
History of major facial surgery, trauma, facial injection (e.g., hyaluronic 
acid), or orthodontic treatment; (4) Combination of diseases resulted in 
a significant change in facial appearance (e.g., scleroderma, systemic 
lupus erythematosus, dermatomyositis). 

2.3. Data collection 

Facial images, demographic information and disease diagnosis were 
collected for each participant from the data source. Identity information 
was removed to ensure privacy protection before further processing. 
Then data of each participant underwent a cleaning process to eliminate 
inconsistencies or errors. All participant data was formatted according 
to a standard criterion to ensure uniformity and ease of analysis. 

2.4. Facial image database building 

The facial image database was built to manage the data collected in 
the above steps. The database will support the storage, organization, 
retrieval and update of the multi-modal data, including full resolution 
color images, numerical information, text information, etc. The facial 
image database was organized and stored with a website only available 
in the intranet cloud server. 

For each endocrine and metabolic syndrome involved in the data
base, dFRI (disease FRI) was calculated to represent the facial feature 
complexity of the target disease. As previously described, dFRI was 
defined as the product of the number of independent facial phenotypes 
(Nf) of the disease and the maximum penetrance (Pmax) of the facial 
features [15]. After calculation, the dFRI is stored in the database as one 
of the entries of each patient. 

2.5. Model training of AI-FR for diagnosis of endocrine and metabolic 
syndromes 

The disease group and the control group were randomly selected at 
the ratio of 5:1 matched by sex, age, and race. Facial images of both 
groups were first extracted and preprocessed. The face area was first 
recognized and intercepted from the entire image. To minimize the 
impact of orientation and lighting, the image was then rectified, 
normalized, and converted into grayscale. Afterwards, facial images 
from both the disease group and the control group were merged and 
randomly split into a training set and a test set at a ratio of 3:7. AI-FR 
automatic classification models were trained for each disease. To 
leverage the strengths of various methods, three classical machine 
learning algorithms were applied: support vector machine (SVM), k- 
nearest neighbor (KNN), and adaptive boosting (AdaBoost). SVM models 
maximize the interval in the feature space to achieve binary classifica
tion. KNN models measure the distance between different feature points 
and use the principal component analysis (PCA) method to reduce the 
numerous features before classification. AdaBoost models combine 
multiple different classifiers trained by one dataset and formed a 
weighted classification model with optimal performance. Following the 
initial training, parameters were adjusted to achieve optimal results. The 
test set was then fed into each model to determine the accuracy of 
automatic classification. This process was iterated five times randomly 
to enhance robustness. 
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Model training was performed with Python packages dlib (version 
19.22.1), scipy (version 1.5.2), sklearn (version 0.23.2), and matplotlib 
(version 3.3.2). 

2.6. Evaluation of the diagnostic performance and statistical analysis 

The diagnostic performance of each AI-FR models in each disease 
were evaluated with four indices: accuracy, sensitivity, specificity, and 
area under receiver operating characteristic (AUC). Then possible 
influencing factors of diagnostic performance were explored. Linear 
regression analysis was performed separately for each endocrine and 
metabolic syndrome to investigate the relationship between diagnostic 
performance indices and two factors: sample size of the training set and 
dFRI. The statistical analysis was performed with SPSS (version 26.0). P- 
value below 0.05 was considered statistically significant. 

3. Results 

3.1. Composition of the facial image database 

The facial image database organized the following entries for each 
included patient or healthy individual: the facial image, disease diag
nosis or health status, and dFRI of the disease. The study population 
included 462 patients with 10 endocrine and metabolic syndromes into 
the disease group and 2310 individuals from healthy population into the 
control group. In the disease group, there were 68 cases of Down syn
drome, 58 cases of Cornelia de Lange syndrome, 193 cases of Noonan 
syndrome, 16 cases of Turner syndrome, 35 cases of Prader-Willi syn
drome, 22 cases of Angelman syndrome, 17 cases of fragile-X syndrome, 
20 cases of Aymé-Gripp syndrome, 13 cases of achondroplasia, and 20 
cases of Laron syndrome. 

Of each included endocrine syndrome, Nf, Pmax, and dFRI were 
calculated as shown in Table 1. Both Down syndrome and fragile X 
syndrome have 9 facial features and a maximum penetrance of 100%, 
and the calculated dFRI is 9 [19,20]. Noonan syndrome has 8 facial 
features and a maximum penetrance of 100%, and the calculated dFRI is 
8 [21]. Cornelia de Lange syndrome has 9 facial features and a 
maximum penetrance of 82.7%, and the calculated dFRI is 7.443 [22]. 
Aymé-Gripp syndrome [23], Angelman syndrome, and Prader-Willi 
syndrome [24] have 6 facial features and a maximum penetrance of 
100%, and the calculated dFRI of them were all 6. Laron syndrome has 5 
facial phenotypes with a maximum penetrance of 100%, and the dFRI is 
5 [25]. There are 4 facial phenotypes of achondroplasia and the 
maximum penetrance is 100%, so the dFRI is 4 [26]. Turner syndrome 
has 6 facial phenotypes and the maximum penetrance is 56%, so dFRI is 
3.36 [13]. 

3.2. Diagnostic performance of AI-FR models for endocrine and metabolic 
syndromes 

For each endocrine syndrome, the diagnostic performance (accuracy, 
sensitivity, and specificity) of each AI-FR model (SVM, PCA-KNN, and 
AdaBoost) was shown in Table 2. The AUC and the diagnostic receiver 
operating characteristic (ROC) curves of SVM and AdaBoost models 
were shown in Table 2, Fig. 1, and Fig. 2. The AUC and ROC curve of 
PCA-KNN algorithm was not shown because this algorithm does not 
produce probability scores for classifications [27]. 

In Down syndrome, the best accuracy is 0.935 obtained by the 
AdaBoost model, the best sensitivity is 0.698 obtained by the AdaBoost 
model, the best specificity is 1.000 obtained by the SVM model, and the 
best AUC value is 0.984 obtained by the SVM model. The optimal ac
curacy and sensitivity for Cornelia de Lange syndrome are 0.930 and 
0.739 in the AdaBoost model, specificity of 1.000 in the SVM model, and 
AUC of 0.951 in the AdaBoost model. In Noonan syndrome, the best 
accuracy and sensitivity were 0.923 and 0.681 in the AdaBoost model, 
while the best specificity and AUC values were 0.995 and 0.983 in the 

SVM model. The best diagnostic accuracy of Turner syndrome is 0.843 
obtained by the SVM model, the best sensitivity of 0.367 in the PCA-KNN 
model, the best specificity of 1.000 in the SVM model, and the best AUC 
value of 0.797 in the SVM model. The highest accuracy and sensitivity of 
Prader-Willi Syndrome were 0.923 and 0.626 in the AdaBoost model, 
while the highest specificity and AUC were 1.000 and 0.957 in the SVM 
model. The best accuracy of Angelman syndrome was achieved in the 
AdaBoost model at 0.916, the optimal sensitivity was 0.597 in the PCA- 
KNN model, and the optimal specificity and AUC were achieved in the 
SVM model at 1.000 and 0.965. The optimal accuracy for Aymé-Gripp 
Syndrome is 0.903 in the AdaBoost model, 0.710 in the PCA-KNN model, 
and 1.000 and 0.985 for specificity and AUC in the SVM model. The 
optimal accuracy for Fragile-X syndrome is 0.880 in the AdaBoost 
model, 0.528 in the PCA-KNN model, and 1.000 and 0.981 in the SVM 
model for specificity and AUC. In Laron syndrome, the best accuracy and 
sensitivity were 0.921 and 0.725 in the AdaBoost model, while the best 
specificity and AUC values were 1.000 and 0.990 in the SVM model. 
Among achondroplasia, the SVM model showed the best accuracy, 
specificity, and AUC performance, with values of 0.827, 1.000, and 
0.917, respectively. The optimal sensitivity was 0.599 of the PCA-KNN 
model. 

3.3. Optimal diagnostic performance and influencing factors of AI-FR 
models 

To obtain the best diagnostic performance in each endocrine and 
metabolic syndrome, the highest accuracy, sensitivity, specificity, and 
AUC were selected across the three models. Possible influencing factors 

Table 1 
DFRI of endocrine and metabolic syndromes included in the facial image 
database.  

Disease Facial features Nf Pmax dFRI 

Down syndrome Short face, slanting eyes, 
epicanthic fold, brushfield spots, 
low ear, small ear, low bridge of 
nose, small mouth, tongue 
extension 

9 100% 9 

Fragile-X syndrome Narrow face, long face, prominent 
forehead, high palatal arch, 
prominent chin, large jaw, large 
ears, large mouth, thick lips 

9 100% 9 

Noonan syndrome Large forehead, high palatal arch, 
wide eye distance, ptosis, short 
nose, wide nasal base, low ear, full 
upper lip 

8 100% 8 

Cornelia de Lange 
syndrome 

Short face, small jaw, arched 
eyebrows, connected eyebrows, 
short nose, forward nostrils, long 
philtrum, thin upper lip, upturned 
corners of mouth 

9 82.7% 7.443 

Aymé-Gripp 
syndrome 

Short face, ptosis, short nose tip, 
medium length, small mouth, low 
ear position 

6 100% 6 

Angelman 
syndrome 

Narrow forehead, wide jaw, 
almond eyes, narrow nasal bridge, 
thin upper lip, tongue extension 

6 100% 6 

Prader-Willi 
syndrome 

Narrow face, small jaw, almond 
eyes, narrow nose bridge, thin 
upper lip, drooping corners of the 
mouth 

6 100% 6 

Laron syndrome Protruding forehead, low bridge of 
nose, short face, small jaw, blue 
sclera 

5 100% 5 

Achondroplasia Large head, protruding forehead, 
low bridge of nose, broad jaw 

4 100% 4 

Turner syndrome Small jaw, epicanthic fold, ptosis, 
wide eye distance, low ear, 
multiple nevi 

6 56% 3.36 

Abbreviations: dFRI, disease facial recognition intensity; Nf, number of inde
pendent facial phenotypes; Pmax, the maximum penetrance of the facial features. 
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(sample size of training set and dFRI) were also presented (Fig. 3, 
Table 3). The linear regression analysis showed that diseases with higher 
dFRI had higher optimal AUC (P = 0.035), while there was no significant 
association between dFRI and diagnostic accuracy (P = 0.059), sensi
tivity (P = 0.0416) or specificity (P = 0.234). There was no significant 
correlation between the sample size of the training set and the diagnostic 
performance. 

In terms of AI model selection, AdaBoost models had the best diag
nostic accuracy; PCA-KNN models and AdaBoost models had higher 
sensitivity; SVM models had the highest specificity and AUC. For 
optimal diagnostic performance obtained with the SVM model, the 
higher the dFRI of the disease, the better the diagnostic AUC (P = 0.040 
in the linear regression). However, there was no significant association 
between dFRI and diagnostic performance in other AI models. 

4. Discussion 

This study has profound clinical relevance focusing on the automatic 
AI facial recognition system for diagnosis of endocrine and metabolic 
syndromes. Research in automated identification applied in clinical 
medicine is exploding. Artificial-intelligence-based facial recognition 
has been found to have superior performance in diagnosis of diseases. 
This interdisciplinary field is promising for the optimization of the 
screening and diagnosis process and assisting in clinical evaluation and 
decision-making [28]. In this study, we generated main findings as 
follows: (1) an extensive facial image database encompassing diverse 
ethnicities, regions, and individuals with endocrine and metabolic syn
dromes was developed for AI-FR diagnosis; (2) the AI-FR models 
designed for diagnosing endocrine and metabolic syndromes demon
strated exceptional efficacy within this facial image repository; (3) the 
concept of dFRI, which indicates the complexity of facial features, could 
potentially impact the diagnostic performance of AI-FR algorithms. 

In recent years, the AI-FR technique has been widely used in the 
medical diagnosis of endocrine and metabolic syndromes with typical 
facial features, showing ideal diagnostic efficiency and practical pros
pects [16,17]. Nevertheless, most AI-FR methods focused on a single 
type of disease with participants of limited race and regions. Since there 
are multiple types of endocrine syndromes and the standardized diag
nostic procedures are complex, it is necessary to develop diagnostic 
methods that could be easily and widely applied. This study has built the 
first medical facial image database of endocrine and metabolic syn
dromes with multi-diseases, multi-ethnicities, and multi-regions. By 
combining data collected from various public sources, 462 patients with 
10 types of endocrine and metabolic syndromes were included. The 
database was centered around facial images and also included clinical 
information. It not only provided data for the need of AI-FR model 
training, but also supported the application of medical teaching and 
knowledge popularization of rare diseases. 

Based on this facial image database, the AI-FR diagnostic system 

exhibited varying performance levels when trained with three different 
algorithms. Across the 10 endocrine and metabolic syndromes, the SVM 
showed diagnostic accuracy of 0.827–0.920; the PCA-KNN showed ac
curacy of 0.766–0.890; and the AdaBoost showed accuracy of 
0.818–0.935. The AdaBoost model had the best diagnostic accuracy; the 
PCA-KNN and the AdaBoost models had better sensitivity; and the SVM 
model had the highest specificity and AUC. Various algorithms have 
different approaches and identify distinct patterns within the same 
dataset. These patterns have different impacts on the same disease. 
Consequently, we selected the most effective algorithm for each disease 
through comparative analysis, aiming to enhance the model’s 
performance. 

Various diseases exhibit distinct diagnostic performance even when 
employing the same model for training. For the optimal diagnostic index 
across the 10 diseases, the accuracy was 0.827–0.935; the sensitivity 
was 0.367–0.739; the specificity was 0.995–1.000; and the AUC was 
0.797–0.990. Down syndrome had the highest accuracy of 0.935 by 
AdaBoost. Cornelia de Lange syndrome had the highest sensitivity of 
0.739 by AdaBoost. All the 10 diseases had a specificity of over 99% by 
SVM. Laron syndrome had the highest AUC of 0.990 by SVM. These 
results suggested that to enhance performance in clinical practice, AI 
models should be tailored according to the specific disease type. Addi
tionally, it prompted us to explore deeper into the factors determining 
variations in diagnostic performance across different diseases. 

Previously, there is few study on influencing factors of diagnostic 
efficacy of AI-FR. As far as we know, our team is one of the first re
searchers to pay attention to this issue. In a meta-analysis of all re
searches on AI-FR models of disease diagnosis, we described the 
complexity of facial features of diseases using a novel index called dFRI 
and suggested it may influence the accuracy of AI-FR [15]. In this 
research, we validated that dFRI could potentially enhance AI diagnostic 
performance across various diseases and machine learning algorithms. 
Interestingly, we found no notable correlation between the sample size 
of the training set and accuracy performance. These results aligned with 
prior research on breast cancer and colon polyps, suggesting that distinct 
disease image features play a crucial role in the accurate performance of 
AI recognition [29,30]. 

Further, we have also introduced a hypothesis suggesting that the 
complexity of the research object determines the complexity of the AI 
processing process and potentially impacts the accuracy of AI diagnosis. 
Adjusting AI parameter could potentially boost diagnostic accuracy for 
subjects with lower complexity. This theory, referred to as the Object 
Complexity Theory (OCT), was initially derived from assumptions based 
on literature [15]. Notably, this study is consistent with the finding that 
FRI is a possible influencing factor for diagnostic performance of facial 
recognition, further validating OCT within practical settings [31]. These 
discoveries might serve as a theoretical foundation for future applica
tions of AI in clinical and research domains, such as AI image recogni
tion for pulmonary nodules [5] and optic neuropathy [8]. 

Table 2 
Diagnostic efficacy of different AI-FR models in the 10 endocrine and metabolic syndromes.  

Disease SVM PCA-KNN AdaBoost 

Acc. Sen. Spe. AUC Acc. Sen. Spe. Acc. Sen. Spe. AUC 

Down syndrome 0.880 0.194 1.000 0.984 0.839 0.576 0.904 0.935 0.698 0.984 0.974 
Cornelia de Lange syndrome 0.911 0.520 1.000 0.937 0.861 0.497 0.923 0.930 0.739 0.973 0.951 
Noonan syndrome 0.920 0.566 0.995 0.983 0.879 0.636 0.930 0.923 0.681 0.968 0.948 
Turner syndrome 0.843 0.050 1.000 0.797 0.793 0.367 0.873 0.836 0.283 0.957 0.705 
Prader-Willi syndrome 0.855 0.045 1.000 0.947 0.890 0.531 0.954 0.923 0.626 0.981 0.957 
Angelman syndrome 0.863 0.000 1.000 0.965 0.884 0.597 0.962 0.916 0.576 0.982 0.914 
Fragile-X syndrome 0.846 0.000 1.000 0.981 0.766 0.528 0.821 0.880 0.348 0.980 0.812 
Aymé-Gripp syndrome 0.836 0.000 1.000 0.985 0.879 0.710 0.910 0.903 0.706 0.971 0.972 
Achondroplasia 0.827 0.000 1.000 0.917 0.791 0.599 0.843 0.818 0.423 0.910 0.855 
Laron syndrome 0.848 0.240 1.000 0.990 0.855 0.664 0.919 0.921 0.725 0.969 0.972 

Abbreviations: SVM, support vector machine; PCA-KNN, principal component analysis-k-nearest neighbor; AdaBoost, adaptive boosting; Acc., accuracy; Sen., 
sensitivity; Spe., specificity; AUC, area under receiver operating characteristic. 
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Fig. 1. Diagnostic receiver operating characteristic curve of the SVM model in the 10 endocrine and metabolic syndromes. A. Down syndrome. B. Cornelia de Lange 
syndrome. C. Noonan syndrome. D. Turner syndrome. E. Prader-Willi syndrome. F. Angelman syndrome. G. Fragile-X syndrome. H. Aymé-Gripp syndrome. I. 
Achondroplasia. J. Laron syndrome. Abbreviations: ROC, receiver operating characteristic; AUC, area under curve; SVM, support vector machine. 
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Fig. 2. Diagnostic receiver operating characteristic curve of the AdaBoost model in the 10 endocrine and metabolic syndromes. A. Down syndrome. B. Cornelia de 
Lange syndrome. C. Noonan syndrome. D. Turner syndrome. E. Prader-Willi syndrome. F. Angelman syndrome. G. Fragile-X syndrome. H. Aymé-Gripp syndrome. I. 
Achondroplasia. J. Laron syndrome. Abbreviations: ROC, receiver operating characteristic; AUC, area under curve; AdaBoost, adaptive boosting. 
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Fig. 3. Comparison of diagnostic efficacy of the three models in the 10 endocrine and metabolic syndromes. The optimal index was defined as the best performance 
among the three models. A. Down syndrome. B. Cornelia de Lange syndrome. C. Noonan syndrome. D. Turner syndrome. E. Prader-Willi syndrome. F. Angelman 
syndrome. G. Fragile-X syndrome. H. Aymé-Gripp syndrome. I. Achondroplasia. J. Laron syndrome. Abbreviations: SVM, support vector machine; ada, adaptive 
boosting; PCA, principal component analysis. 
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This study also has some limitations. Firstly, this study included 
publicly available facial image data and there were differences in the 
quality of facial images from different sources and some missing clinical 
data. These discrepancies could potentially affect the development of 
diagnostic models due to variations in the number of images available 
for specific diseases. Nonetheless, the study demonstrates that dFRI 
exhibits effective evaluation capabilities across varying facial image 
qualities. Furthermore, certain diseases have limited facial image sam
ples, posing challenges in constructing deep learning neural network 
models. Exploring alternative AI models might offer additional insights 
for clinical applications in such scenarios. 

5. Conclusion 

This research has built a facial image database designed for AI 
diagnosis of varied endocrine and metabolic syndrome with unique 
facial features. Employing three classical algorithms, AI diagnostic 
models demonstrated exceptional accuracy in identifying diseases 
through facial recognition. Moreover, a deeper exploration revealed that 
the complexity of disease-specific facial features was an important factor 
influencing the diagnostic precision performance of AI facial recognition 
models. 
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