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A B S T R A C T   

Background and aims: Obesity is a chronic disease which can cause severe metabolic disorders. Machine learning 
(ML) techniques, especially deep learning (DL), have proven to be useful in obesity research. However, there is a 
dearth of systematic reviews of DL applications in obesity. This article aims to summarize the current trend of DL 
usage in obesity research. 
Methods: An extensive literature review was carried out across multiple databases, including PubMed, Embase, 
Web of Science, Scopus, and Medline, to collate relevant studies published from January 2018 to September 
2023. The focus was on research detailing the application of DL in the context of obesity. We have distilled 
critical insights pertaining to the utilized learning models, encompassing aspects of their development, principal 
results, and foundational methodologies. 
Results: Our analysis culminated in the synthesis of new knowledge regarding the application of DL in the context 
of obesity. Finally, 40 research articles were included. The final collection of these research can be divided into 
three categories: obesity prediction (n = 16); obesity management (n = 13); and body fat estimation (n = 11). 
Conclusions: This is the first review to examine DL applications in obesity. It reveals DL’s superiority in obesity 
prediction over traditional ML methods, showing promise for multi-omics research. DL also innovates in obesity 
management through diet, fitness, and environmental analyses. Additionally, DL improves body fat estimation, 
offering affordable and precise monitoring tools. The study is registered with PROSPERO (ID: 
CRD42023475159).   

1. Introduction 

Obesity is a persistent metabolic ailment that characterized by the 
excessive accumulation of adipose tissue and aberrant distribution of 
body fat. Its insidious ramifications encompass a spectrum of compli-
cations, including diabetes, dyslipidemia, nonalcoholic fatty liver dis-
ease, hypertension and different types of cancers [1,2]. A recent 
comprehensive study encompassing 128.9 million individuals un-
derscores the dramatic surge in global obesity prevalence, with a 
particularly heightened vulnerability observed among younger cohorts 
[3]. This underscores the need for the prevention and management of 
obesity. 

The multifaceted nature of obesity’s etiology, intertwined with 

genetic susceptibilities, cultural norms, dietary habits, and urban envi-
ronments, has posed a challenge for comprehensive understanding and 
effective intervention [4]. Traditional research methodologies have 
often fallen short of capturing the intricacies of its causative network. 
However, recent advancements in genome-wide association studies 
(GWAS), image-based radiomics studies, and metabolites analyses, have 
ushered in novel insights in the realm of obesity research. Particularly 
the integration of advanced computational techniques, notably artificial 
intelligence (AI), offers new avenues for unravelling this complexity [5]. 
In this intricate landscape, ML emerges as a potent approach, capable of 
handling extensive parameters and deciphering the complex, nonlinear 
interrelationship among variables [6]. Nevertheless, a groundbreaking 
paradigm, deep learning (DL), has recently eclipsed traditional ML 
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predictive models across various health domains [7,8]. It has been used 
to determine and optimize the most important factors for overweight 
and obesity in preschool-aged children [9]. Distinguished from con-
ventional ML methods, DL empowers the direct use of raw data, 
leveraging the backpropagation algorithm to unveil intricate structure 
patterns [10]. Its capability of extending predictive variables across 
diverse domains, encompassing text, visual object recognition, and 
speech, enables the identification of novel factors [11–13]. 

While numerous literature reviews have extensively discussed the 
application of ML in obesity research, comparing methodologies with 
traditional statistical models, an existing gap pertains to a systematic 
exploration exclusively focusing on DL within obesity research [14–22]. 
This gap became evident with DeGregory et al.’s [23] seminal work in 
2018, which highlighted the absence of dedicated DL applications in the 
field of obesity. Subsequently, in 2020, Colmenarejo et al. [5] conducted 
an overview of diverse ML models in predicting childhood obesity, with 
only one DL-related article included. Despite an escalation in reviews 
encompassing ML and obesity from 2018 to 2023, a comprehensive 
overview of DL and obesity remains limited [14–22]. Safaei et al. [17] 
(2021) described several ML methods for understanding the causes and 
consequences of obesity, without specifically clarifying the unique role 
of DL. Zhou et al. [22] (2022) briefly investigated the application of DL 
in food recommendation and geographic information systems, but 
didn’t relate it to obesity. Addressing this gap, our study uniquely ex-
plores the application of DL in obesity, providing novel insights beyond 
current literature. 

Emerging as a promising approach, DL has exhibited competitive 
performance in significant fields related to metabolic diseases, such as 
diabetes and cardiovascular diseases [24,25]. Therefore, the present 
study aims to elucidate the latest advances in DL technologies for 
obesity. By clearly defining our research objectives, we seek to enhance 
our understanding of DL’s potential to unravel the complexities of 
obesity, contributing to innovative strategies for its prevention, man-
agement, and resolution. 

2. Deep learning overview 

DL is a branch of AI, developed upon the traditional ML algo-
rithm—artificial neural networks (ANNs), which mimics the structure of 
biological neurons in the brain [26]. A standard ANN, as illustrated in 
Fig. 1, consists of three processing layers: input, output, and hidden 
layers. Each layer consists of multiple neurons, each is an abstract unit 
that uses its parameters to “multiply” the input vector to generate an 
output [24]. DL expands the architecture of ANN into deep neural net-
works (DNN) by incorporating additional hidden layers [27]. This 
augmentation enables the utilization of thousands or even millions of 
parameters for the extraction of data features and the acquisition of 
representations, thereby enhancing generalization capabilities (Fig. 1) 

[28]. Software packages including TensorFlow, PyTorch, Caffe, MXNet 
and Theano, formed the basis of DL implementation and can be executed 
over distributed grids of GPUs and CPUs [26,29]. The evaluation of DL 
classifier performance is assessed through the F1-score, confusion ma-
trix, precision, recall and accuracy [23]. While regression problems 
involve a distinct set of metrics tailored to the nature of regression tasks. 
Commonly employed evaluation metrics for regression tasks encompass 
relative squared error (RSE), mean absolute error (MAE), root means 
square error (RMSE), mean squared logarithmic error (MSLE), and 
R-squared (R2) coefficient [30]. These are frequently used evaluation 
metrics in body mass index (BMI) estimation tasks. 

Generally, DL can be categorized into supervised learning, unsu-
pervised learning and reinforcement learning, based on the learning 
method. Both classification and regression problems are common tasks 
for supervised learning in obesity research, where labelled input data is 
employed to optimize classifier parameters during model training [24]. 
Unsupervised learning, on the other hand, deals with datasets lacking 
explicit output labels. The model learns patterns and structures inherent 
in the data without predefined categories. In obesity research, unsu-
pervised learning may be employed to identify natural groupings of 
patients based on shared characteristics or to uncover latent features in 
the data. Reinforcement learning introduces an interactive element, 
where an agent learns by interacting with an environment and receiving 
feedback in the form of rewards or penalties. While less common in 
traditional medical research, reinforcement learning can find applica-
tions in personalized treatment planning or optimizing interventions 
over time. For instance, it can be employed to tailor treatment plans for 
individual patients based on their responses to interventions [31]. Su-
pervised algorithms of DL encompass a range of models including con-
volutional neural networks (CNNs), recurrent neural networks (RNNs), 
transformers, and others. While autoencoders (AE), deep belief net-
works (DBNs), and restricted Boltzmann machines (RBMs) are 
commonly applied unsupervised learning algorithms. Within the context 
of reinforcement learning, notable models include deep Q networks 
(DQN), deep deterministic policy gradient (DDPG) and, Monte Carlo 
tree search (MCTS), etc. [31]. 

Multilayer perceptron (MLP) and CNNs are presently among the 
most widely used DL algorithms. MLP often serves as a versatile archi-
tecture, and CNNs are particularly specialized for image-based tasks. 
Some notable examples within the CNN family include the visual ge-
ometry group network (VGG) and the residual neural network (ResNet). 
However, it’s crucial to recognize that despite their successes, they 
encounter challenges like vulnerability to overfitting and sensitivity to 
initial conditions. These have propelled the evolution of algorithms. For 
instance, the multi-grained cascade forest (gcForest), inspired by the 
structure of DNNs, has effectively addressed challenges in various neural 
network architectures, encompassing both traditional ANNs like MLPs 
and specialized ones like CNNs. This unique approach demonstrates the 

Fig. 1. Visualization of ANNs and DNNs. In contrast to AANs, the structure of DNNs exhibits a gradual increase in hidden layers, accompanied by intricate layer 
configurations that involve various iterations of neural nodes and cells. 
Abbreviations: ANNs:artificial neural networks; DNNs:deep neural networks. 
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capability to achieve high accuracy even with small training datasets, 
requiring only minor hyperparameter adjustments [32]. Each of these 
DL architectures, from MLPs to advanced iterations of CNNs like VGG 
and ResNet, are fundamentally designed to transform raw input data 
into a hierarchy of features or “representations” that make the under-
lying patterns more discernible for prediction or classification tasks. 
This process is central to the power of DL and is precisely the foundation 
upon which the concept of “embedding” is built. Embeddings take this 
idea further by providing a dense, low-dimensional representation of the 
data, which can capture the intricate relationships within it in a way that 
is highly conducive to ML tasks. As we delve deeper into specialized 
algorithms such as gcForest, which itself performs a form of represen-
tation learning, we see a clear trajectory towards the utilization of 
“embeddings” to handle complex and high-dimensional data, such as 
genetic information, where complex relationships need to be captured 
efficiently. 

In addressing obesity-related problems, DNNs offer a potent 
approach. Most problems in obesity prediction, management, and body 
fat segmentation are tackled through supervised learning. There are two 
supervised learning-based DNNs found in the literature of obesity: CNNs 
and RNNs. RNNs, in particular, distinguish themselves by incorporating 
information from previous time steps into their input, endowing them 
with a powerful ability to process sequential signals and capture tem-
poral features. LSTM, which stands for long short-term memory, is a type 
of RNN that are designed to overcome the problem of vanishing gradi-
ents in traditional RNNs, which can make it difficult to learn long-term 
dependencies in sequential data. In both classification and regression 
tasks, the DNN process begins with collecting and preprocessing rele-
vant data, such as patient profiles, medical records, or numerical fea-
tures. This curated dataset is then input into the DNN model, featuring 
multiple layers of interconnected neurons. Utilizing the iterative process 
of forward and backward propagation, the network effectively learns 
intricate patterns and relationships within the data. For classification, it 
distinguishes between distinct obesity classes like “normal weight”, 
“overweight”, or “obese”, while in regression, it predicts continuous 
outcomes such as numerical values “BMI”, or scores based on the pro-
vided input features. By harnessing the potential of DNNs in obesity- 
related tasks, researchers can extract valuable insights into critical 

aspects such as risk factors, early detection strategies, and intervention 
approaches. Ultimately, this knowledge contributes significantly to the 
identification, assessment, and effective management of obesity-related 
concerns. 

3. Methodology 

Aiming at identifying and analyzing the benefits of DL within 
obesity-related research, we conducted a systematic review by searching 
multiple public online databases, including PubMed, Embase, Web of 
Science, Scopus, and Medline, following the standards introduced by 
Kitchenham and Charters [33]. All these databases provide open-access 
search engines, we restricted the search to English-language documents 
that were published between January 1, 2018, and September 30, 2023. 
The search was performed based on titles, abstracts, keywords, and 
metadata of original articles. We followed the preferred reporting items 
of the systematic review and meta-analyses (PRISMA) approach [34]. 
The selection process has been summarized in Fig. 2. 

3.1. Research questions 

The following research questions were formulated for this study:  

1) What is the most commonly applied DL algorithm in obesity 
prediction?  

2) What is the most popular domain of DL utilization in obesity 
management?  

3) How can DL be leveraged in body fat composition estimation of 
obese individuals based on the current literature? 

3.2. Search strategies 

In the search procedures, the keywords “obesity”, “overweight” and 
“obese” were combined with the DL terms using Boolean operators 
AND/OR. The specific query used in the searching process was: (obesity 
OR overweight OR obese) AND (deep learning OR deep neural network 
OR convolution neural network OR convolutional neural network OR 
recurrent neural network OR LSTM OR Boltzmann machine OR deep 

Fig. 2. Flow of the selection process.  
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belief network). After obtaining the initial collection of relevant articles, 
we removed duplicate research and manually inspected the remaining 
studies based on inclusion and exclusion criteria. A “forward and 
backward” search approach suggested by Watson and Webster was 
implemented in this procedure [35]. 

3.3. Inclusion and exclusion criteria 

Studies adopted in this review are original and have full-text avail-
ability, focused mainly on the practical application of DL in obesity. The 
final collection of studies were allot into three categories based on 
application scenarios and purposes: obesity prediction, obesity man-
agement, and body fat estimation. Particularly, the included studies 
were expected to:  

1) described the information of the data source.  
2) described the methods, e.g., the structure of DNNs.  
3) evaluate model performance with standard metrics or other common 

indicators: RSE, MAE, RMSE, etc. 

The excluded studies were expected to:  

1) works that are considered irrelevant to the research purpose.  
2) couldn’t access full-text availability, abstracts, posters, technique 

reports, and reviews were excluded.  
3) study subjects aren’t human, such as mice, sow, or adipose tissue etc. 

3.4. Quality assessment 

The following criteria were used in the quality assessment process:  

1) Are the topics and abstracts of the study relevant to the review 
question?  

2) Are the data sources clearly described and fully illustrated in the 
methodology section?  

3) Does the model development procedure have a detailed description?  
4) Has the model been validated on an external dataset or has practical 

application in the clinics?  
5) Are the statistical analysis methods described specifically? 

The above criteria were established regarding the quality evaluation 
procedure of Nidehra et al. [19,40]. Articles were then assessed and 
evaluated based on the criteria. If the study satisfied a criterion, it was 
given a score of 2. If it is partially satisfied, it will be given a score of 1. If 
it doesn’t satisfy any criterion, it will be awarded a score of 0. Overall, 
articles that finally have a score of 7 or higher were considered high 
quality. Those who scored 4–6 were considered medium, and those who 
scored lower than 4 were removed from this SLR. After the quality 
assessment, a total of 40 relevant articles were collected for the next 
procedure. 

3.5. Information extraction 

We reviewed the full text and extracted key information from the 
selected articles to evaluate DL applications in obesity. The following 
categories were used to present the selected studies (Tables 1–3):  

1) Cases: The study purpose and its potential application scenarios are 
summarized in this session.  

2) Data Sources: The source of input data for model development is 
summarized in this session. Datasets used in some studies are pub-
licly available. Thus, we summarized the information regarding the 
employed datasets including their sources, sizes, types, and formats.  

3) Models: Algorithms used in developing DL models were described. 
Some developers may rename the prediction model, but their 

fundamental structures originated from the basic algorithms such as 
DNN and CNN, as mentioned before.  

4) Development Process: We described the training strategies for DL 
model development in this category. Although DL can extract fea-
tures from raw data without preprocessing, these development pro-
cedures still need to be carefully designed, to guarantee the model’s 
functionality and reproducibility.  

5) Main Outcomes: The major model performance evaluation index 
with the corresponding metrics and criteria are included in this 
category. Some of the evaluation estimators in obesity prediction are 
SE, SP, and AUC; while dice score is commonly used in body fat 
estimation.  

6) Baselines: In most selected studies, comparison models of traditional 
ML algorithms are listed as baseline methods, to highlight the su-
perior performance of the DL algorithm. Conventional ML models 
collected in this category include logistic regression (LR), general-
ized linear model (GLM), supporting vector machine (SVM), random 
forest (RF), extreme gradient boosting (XGboost), k-nearest neighbor 
(KNN), and decision tree (DT). 

4. Results 

A total of 1940 papers were collected through the initial search from 
PubMed (n = 232), Embase (n = 599), Web of Science (n = 336), Scopus 
(n = 658) and Medline (n = 115). After removing the duplicates (n =
877), 1063 remained. The selected articles were then manually sorted 
according to the inclusion and exclusion criteria. A complete inspection 
for full-text accessibility was carried out to evaluate the eligibility of the 
remaining articles. Finally, 40 research articles were included. The final 
collection of this research can be divided into three categories: obesity 
prediction (n = 16); obesity management (n = 13); and body fat esti-
mation (n = 11). Most selected papers were published in 2022, indi-
cating that DL application in obesity is fairly new and its development 
has been accelerating. The selected works are summarized in Tables 1–3. 
In addition, Fig. 3 summarized the application of DL in obesity. The 
developed models for classification and regression are evaluated with 
the following metrics.  

● Classification metrics: accuracy score, area under curve (AUC), 
classification report and confusion matrix. A confusion matrix con-
sists of two dimensions, “actual”and “predicted”, each of which in-
cludes categories for “true positive (TP)”, “true negative (TN)”, “false 
positive (FP)”, and “false negative (FN)”. Formulas for calculating 
the classification metrics are stated below: 

Accuracy =
(TP + TN)

TP + FP + FN + TN

Precision =
TP

(TP + FP)
,

Recall(Sensitivity) =
TP

(TP + FN)
,

Specificity = (1 − Sensitivity) =
TN

(TN + FP)

F1 score =
2 ∗ precision ∗ recall

precision + recall

(1) 

Accuracy measures how closely a measured value aligns with the 
true value. Precision measures the closeness of predicted values to true 
values, while Recall (or sensitivity) gauges the model’s ability to identify 
all positive instances. The F1-score combines precision and recall to 
strike a balance between these aspects in model evaluation. These 
metrics are vital for evaluating and comparing the performance of DL 
models across different applications.  

● Regression metrics: MAE, MSE, RMSE and R2-score. 
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Table 1 
Summary of research articles delving into obesity prediction.  

Ref Cases Data Sources Models Development 
Process 

Main Outcomes Baselines Year 

Montanez et al. 
[36] 

Obesity 
prediction 

Genotypes and 
Phenotypes (dbGaP) 
dataset: 240,950 SNP 
genotypes of 1997 
individuals 

Multi-layer 
feedforward artificial 
neural network 

Hyperparameters: 
5 SNPs model: hidden layers: 2; 
neurons: 20; activation function: 
maxout with dropout; L1:7.1 ×
10^-5; L2:9.6 × 10^-5. 
32 SNPs and 248 SNPs model: 
hidden layers:2; neurons: 50; 
actiation function: Tanh with 
dropout; L1:3.0 × 10^-6; L2:6.5 
× 10^-5; 
2465 SNPs model: hidden 
layers:2; neurons: 10; actiation 
function: rectifier with dropout; 
and L1:9.6 × 10^-6; L2:2.8 ×
10^-5.V 
alidation: internal; 10-fold cross- 
alidation. 

AUC of validation set: 
0.627 (using 5 SNPs), 
0.754 (using 32 SNPs), 
0.923 (using 248 SNPs), 
0.9931 (using 2465 
SNPs). 

N/A 2018 

Lapierre et al. 
[37] 

Obesity 
prediction 

Metagenomic samples 
from 164 obese patients 
and 89 non-obese 
controls (datasets of 
MetAML study) 

AutoNN: neural 
network with 
autoencode 

Hyperparameters: number of 
autoencoder layers: 1; number 
of feedforward layers: 5; 
dropout rate: 0.5; optimizer: 
adagrad; learning rate: 0.001.V 
alidation: internal; 5-fold cross- 
alidation. 

AUC using microbial 
abundances: 
gcForest:0.6495; 
AutoNN:0.6031. 
AUC using k-mer 
abundances: 
gcForest:0.6186; 
AutoNN:0.5666. 

gcForest; SM; 
RF; XGBoost. 

2019 

Oh et al. [38] Obesity 
prediction 

Whole-genome shotgun 
metagenomic studies: 
metagenomic samples 
from 164 obese patients 
and 89 non-obese 
controls 

DeepMicro: arious 
autoencoders, 
including, deep 
autoencoder, 
ariational 
autoencoder, and 
conolutional 
autoencoder 

Hyperparameters: specific 
hyperparameters are not 
mentioned.V 
alidation: internal; 5-fold cross- 
alidation. 

DeepMicro (abundance- 
based model): 
AUC:0.674. 

N/A 2020 

Montanez et al. 
[39] 

Obesity 
prediction 

Genotypes and 
Phenotypes (dbGaP) 
dataset: 2193 
participants; each 
participant contains 
594,034 genetic 
markers 

SAERMA: stacked 
autoencoder rule 
mining algorithm 

Hyperparameters: not 
mentioned;V 
alidation: internal. 

AUC: 77%; SE: 68% SP: 
Gini coefficient: 53%; 
log loss: 0.58; MSE: 
0.20. 

N/A 2020 

Yao et al. [40] BMI 
prediction 

Publicly aailable 
datasets of human 
actiity recognition: 67 
subjects from MobiAct 
and 24 subjects from 
MotionSense 

CNN-LSTM Hyperparameters: optimizer: 
Adam; learning rate: 0.001; 
epochs: 200; batch size: 20; 
dropout rate: 0.5; regularizer: 
L2.V 
alidation: internal; leae-one- 
subject-out cross-alidation. 

Accuracy: 94.8% ±
1.5%. 

kNN; 
SM; 
C4.5; 
DT. 

2020 

Kim et al. [41] Body 
weight 
prediction 

Lifelog mobile app: user 
data of 17,867 
indiiduals going 
through the 16-week 
weight loss program 

RNN Hyperparameters: not 
mentioned.V 
alidation: internal; 5-fold cross- 
alidation. 

MAE:3.50%. N/A 2021 

Lee et al. [42] Obesity 
prediction 

Walking data from 
mHealth APP: 170 high 
school students 

Feedforward neural 
network; 
CNN 

Hyperparameters: 
1) Feedforward neural network: 
input layer initialized by Glorot 
normal initialization; input 
shape: 9 rotation vectors; hidden 
layers: 5 layers, each with 512 
neurons and 50% dropout rate; 
output layer: 2 neurons with 
Softmax actiation function. 
2) CNN: 3 conolution layers with 
the Relu actiation function; first 
conolution layer: 512 output 
filters; second conolution layer: 
1024 output filters; third 
conolution layer: 2048 output 
filters; one max pooling layer for 
resizing; two densely connected 
neural network layers for the 
output layer; output layer: 2 
neurons with Softmax actiation 
function; dropout rate: 50%.V 

Feedforward: neural 
network: 
accuracy:61.8%, 
90.5%; 
loss value: 4.998,0.979 
CNN: accuracy: 54.8%, 
79%; 
loss value:3.551,2.12. 

N/A 2022 

(continued on next page) 
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MAE measures the average absolute difference between the pre-
dicted values generated by a model and the actual observed values. MAE 
is often used in conjunction with other regression performance metrics, 
such as MSE and RMSE, to provide a comprehensive evaluation of the 
model’s performance. MSE measures the average squared difference 

between the predicted values and the actual observed values. A smaller 
MSE also indicates better accuracy, but it amplifies the impact of large 
errors. RMSE is the square root of MSE, providing a measure of the 
average squared prediction error. R2 measures how well the model ex-
plains the variability in the target variable. Its values range from 0 to 1, 

Table 1 (continued ) 

Ref Cases Data Sources Models Development 
Process 

Main Outcomes Baselines Year 

alidation: internal; 10-fold cross- 
alidation. 

Dhanamjayulu 
et al. [43] 

BMI 
prediction 

Images: 1530 human 
face images scraped 
from the internet 

Residual network 50 Hyperparameters: 50 layers; 
others not mentioned.V 
alidation: internal; multi-task 
cascaded conolutional neural 
network. were used to process 
facial images; training samples: 
1227, test samples: 316. 

MAE (5.02); 
RMSE (4.56). 

Visual geometry 
group 16; 
Sequential 
multi-task sual 
geometry group. 

2022 

Eom et al. [44] Obesity 
prediction 

BIGKinds: 8830 texts 
data from 52 media 

RNN; 
LSTM 

Hyperparameters: 
1)RNN: 2 layers, 12 timesteps, 
64 hidden nodes, 0 L2 

regularization, 0 dropout rate, 
32 batch size, and 7 epochs. 
2)LSTM: 2 layers, 12 timesteps, 
32 hidden nodes, 0 L2 

regularization, 0.1 dropout rate, 
20 batch size, and 10 epochs. 
The learning rate is not 
explicitly mentioned.V 
alidation: internal. 

RNN: accuracy: 
98.218%; 
precision: 97.456%; 
recall: 89.757%; 
LSTM: accuracy: 
97.122%; 
precision: 96.717%; 
recall: 89.669%. 

N/A 2022 

Snekhalatha 
et al. [45] 

Obesity 
detection 

Fifty healthy subjects 
and fifty age cum sex 
matched obese subjects 
(1000 images for 
normal and 1000 
images for obese 
classes) 

CNN Hypermeters: optimizer: 
stochastic gradient descent; 
learning rate: 0.01; clip alue: 
0.5; epochs:20.V 
alidation: internal. 

The highest: 
F1-score: 0.92; AUC: 
0.948 

N/A 2021 

Gupta et al. 
[46] 

BMI 
prediction 

An EHR dataset of 
children and 
adolescents from 
Nemours Children’s 
Health: 68,003 patients 

RNN with LSTM cells Learning rate:an Adadelta 
optimizer with an initial 
learning rate of 0.05; the epoch 
or batch size used for training is 
not mentioned V 
alidation: internal. 

AUC for a 3-year 
window: 
0.80 at 5 years 
(preschool), 
0.93 at 11 years 
(prepubertal), 
0.92 at 18 years (post- 
pubertal). 

Linear 
regression; RF. 

2022 

Grazioli et al. 
[47] 

Obesity 
prediction 

A total of 11 different 
cohorts: metagenomic 
and metabolomic data 
from human gut 
microbiota 

Multimodal ariational 
information 
bottleneck; DeepMicro 
with ariational 
autoencoder 

Hyperparameters for 
multimodal ariational 
information bottleneck: learning 
rate: 10^-4; latent dimension: 
256; batch size: 256; epochs: 50 
epochs. (DeepMicro not 
mentioned).V 
alidation: internal; 5-fold cross- 
alidation. 

AUC on obesity: 
Multimodal variational 
information bottleneck: 
0.743 
DeepMicro with 
variational 
autoencoder: 0.731. 

RF: 0.806; 2022 

Jin et al. [48] BMI 
estimation 

Project webpage: 4190 
images 

CNN (DenseNet) Hyperparameters: batch size:32; 
epochs:50.V 
alidation: internal; 10-fold cross- 
validation. 

MAE: 4.00; 
MAPE: 12.50% 

N/A 2022 

Rashmi et al. 
[49] 

Obesity 
detection 

Siananda Gurukulam 
school: data of 150 
children (Obese: n =
50; Oerweight: n = 50) 

CNN (MobileNet ersion 
2; isual geometry 
group 16; Customized 
Net) 

Hyperparameters: batch size: 
128; learning rate: 0.01; 
epochs:50.V 
alidation: internal; 5-fold cross- 
validation. 

Accuracy: 
MobileNet Version 2: 
74.8%V 
isual geometry group 
16: 79.2% 
Customized net: 89.3%. 

N/A 2022 

Forte et al. [50] Classify 
obesity risk 

Portuguese project: 654 
adolescents 

Neural network Hyperparameters: optimizer: 
adam; batch size: 16 units.V 
alidation: internal; 10-fold cross- 
alidation. 

Accuracy: 75%; AUC: 
0.64. 

N/A 2023 

Richa et al. [51] Obesity 
detection 

Siananda Gurukulam 
school: data of 100 
children (Obese: n =
50) 

Residual network 18; 
isual geometry group 
19 

Hyperparameters: not 
mentioned.V 
alidation: internal; 5-fold cross- 
validation. 

Oerall classification 
accuracy: Residual 
network-18: 94.2%; 
Visual geometry group- 
19: 86.5%. 

N/A 2023 

Abbreiations: AUC: area under the cure; SVM: supporting vector machine; RF: random forest; SE: sensitivity; SP: specificity; MSE: mean squared error; BMI: body mass 
index; CNN: conolutional neural network; LSTM: long short-term memory; kNN: k-nearest neighbor; DT: decision tree; RNN: recurrent neural network; MAE: mean 
absolute error; RMSE: root mean square error; MAPE: mean absolute percentage error. 
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Table 2 
Comprehensie oeriew of research articles addressing the multifaceted aspects of obesity management.  

Ref Cases Data Sources Models Deelopment 
Process 

Main Outcomes Baselines Year 

Hasan 
et al. 
[60] 

Body weight 
control 

Transcripts of 129 
motiational 
interiews: 50,239 
segmented and 
annotated utterances 

LSTM; gated 
recurrent unit 

Hyperparameters: learning 
rate: 0.00005; 
batch size: 8; 
epochs:100.V 
alidation: internal; 10-fold 
cross-validation. 

LSTM with target replication: 
precision:0.8733 
recall:0.8681 
f1-score: 0.8677.G 
ated recurrent unit with target 
replication: 
precision:0.8705 
recall:0.8676 
f1-score: 0.8673. 

Statistic model; 
Marko chain; hidden 
marko model. 

2018 

Mcallister 
et al. 
[61] 

Food 
classification 

Food image datasets: 
Food-5K, Food-11, 
RawFooT-DB, and 
Food-101 

Google net; 
Residual 
network 152; 
isual geometry 
group 16; 
Residual 
network t-50 

Hyperparameters: specific 
hyperparameters are not 
mentioned; the framework is 
to use DL algorithms to do 
feature extraction job; and 
then ANN, SM, RF were 
trained on the learned 
representation.V 
alidation: internal; 10-fold 
cross-validation. 

ANN classifier: accuracy: 
91.5%; recall: 0.915; F1 Score: 
0.915; kappa: 0.83; AUC: 0.98. 
SM classifier: accuracy: 89.5%; 
recall: 0.895; F1 Score: 0.895; 
kappa: 0.79; AUC: 0.97. 
RF classifier: accuracy: 88.5%; 
recall: 0.885; F1 Score: 0.885; 
kappa: 0.77; AUC: 0.96. 

N/A 2018 

Nguyen 
et al. 
[62] 

Liing 
enironment 

Google’s street iew: 
430,000 images for 
Salt Lake City, 
Chicago and 
Charleston 

CNN Hyperparameters: not 
mentioned.V 
alidation: not mentioned. 

Accuracy: commercial 
buildings/apartments: 84.59%; 
green-30%:85.40%; crosswalk 
recognition: 93.03%. 

Manual annotations. 2018 

Lee et al. 
[63] 

Body weight 
control 

Korean Genome and 
Epidemiology Study 
(KoGES): 12,206 
eligible consecutie 
isit-pairs of 3447 
participants 

DNN Hyperparameters: learning 
rate:5 × 10^-3; 
epochs: 500.V 
alidation: external validation 
of national health insurance 
serice of Korea–National 
sample cohort. 

AUC:0.876. LR (0.851); NB (0.857); 
RF (0.867); XGBoost 
(0.879). 

2020 

Phan et al. 
[64] 

Liing 
enironment 

Google Street iew: 
31,247,167 images 

CNN Hyperparameters: not 
mentioned.V 
alidation: internal. 

Accuracy: 
85%–93% for the separate 
recognition tasks. 

Manual annotations. 2020 

Xiao et al. 
[65] 

Liing 
enironment 

Baidu Street iew 
images: 8988 
samples from 40 
communities in 
Shanghai 

CNN Hyperparameters: not 
mentioned.V 
alidation: not mentioned. 

N/A N/A 2020 

Kim et al. 
[66] 

Dietary 
management 

Korea national 
health and nutrition 
examination surey 

DNN Hyperparameters: learning 
rate:0.01; the batch size:20; 
epochs:100.V 
alidation: internal; 5-fold 
cross validation. 

Accuracy: 0.62496. LR: 0.62486; 
DT:0.54026. 

2021 

Exarchou 
et al. 
[67] 

Dietary 
management 

Food-101 dataset: 
38 k images of desert 
and non-desert 

CNN 
(inception3); 
Residual 
network 101; 
isual geometry 
group 16; 
MobileNet 

Hyperparameters for 
inception 3: initial learning 
rate = 0.008; 
momentum:0.9; decreasing 
learning rate by half every 10 
epochs; trained to binary 
cross-entropy loss 0.0910 
after 27 epochs.V 
alidation: external; a new data 
collection of food images 
captured under challenging 
light and angle of capture 
conditions. 

Accuracy: 
Google Inception3:95.79%; 
Residual network 101: 92.99%; 
V 
isual geometry group: 82.24%; 
mobileNet: 89.25%. 

N/A 2022 

Oduru 
et al. 
[68] 

Dietary 
management 

Google images: 
23,141 food images 
(definitiely healthy, 
healthy, unhealthy, 
definitiely 
unhealthy) 

Residual 
network 152 

Hyperparameters: not 
mentioned.V 
alidation: external validation; 
Twitter dataset. 

Accuracy: 77.25%; 
F1-score:78.8%. 

N/A 2022 

Chen et al. 
[69] 

Dietary 
management 

Business analyst: 
restaurants images; 
Google images: food 
images 

CNN Hyperparameters: not 
mentioned.V 
alidation: not mentioned. 

Validated the model’s 
performance using three 
statistical metrics: Kendall’s 
tau rank correlation 
coefficient, Pearson’s 
correlation coefficient, and 
Cohen’s kappa coefficient 
using linear weights. The 
correlation coefficients (τ =

The calorie information 
obtained from a 
published nutrient 
composition database. 

2022 

(continued on next page) 

X. Yi et al.                                                                                                                                                                                                                                        

Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en abril 19, 2024. 
Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.



Diabetes & Metabolic Syndrome: Clinical Research & Reviews 18 (2024) 103000

8

with 1 indicating a perfect fit and 0 indicating a poor fit. A higher R2 

score indicates a better fit and greater explanatory power of the model.   

4.1. Obesity prediction 

Prompt detection of obesity onset is crucial in preventing chronic 
complications associated with obesity status. Conventional ML methods 
have been vastly applied in obesity prediction [5,17,22]. However, 
compared with traditional ML methods, DL has shown superior perfor-
mances [36–51]. 

Recently, with the flourishing of omics data, its’ advantage has 
become evident. Conventional ML methods may suffer from computa-
tional complexity when dealing with data derived from the GWAS study. 
To address this, the concept of “embedding” comes into play. Embed-
dings can handle high-dimensional omics data by transforming it into a 
form that reduces computational demands for conventional ML 
methods. DL models facilitate this by generating embeddings of single 
nucleotide polymorphisms (SNPs), thereby enabling the detection of 
complex interactions that may contribute to obesity [36]. These em-
beddings effectively condense the genetic information into a 
lower-dimensional space that can be more readily analyzed. Montanez 
et al. [36] utilized stacked autoencoders (SAEs) to distill the complexity 
of SNP epistatic information into a more manageable form. Their model 
adeptly compressed 2465 SNPs into a lower-dimensional embedding, 
yielding a high AUC of 0.993 for obesity prediction. However, the 
number of SNPs proved to be a crucial factor for model performance; a 
reduction in SNP input to 5 resulted in a significantly lower AUC of 
0.627, indicating sensitivity to the input size. This insight prompted 

subsequent research to explore the potential of SAEs in achieving 
compact representations of SNPs without losing essential information. 
By adjusting the hidden units in the SAEs, later studies effectively 
reduced the SNP count to 204 and still achieved a respectable AUC of 

0.77 for obesity prediction [38]. These findings underscore the effec-
tiveness of embeddings in condensing genetic information into a 
lower-dimensional space for more efficient analysis. 

Apart from genetic variants, metagenome-based profiles also provide 
novel insights into obesity prediction. The MetAML (metagenomic pre-
diction analysis based on ML) study collected microbiome samples from 
diseases including cirrhosis, diabetes, colorectal disorders, and obesity 
from 8 large cohorts, a total of 164 obesity samples and 89 normal 
controls were contained. Several studies have reported that ML models 
based on this dataset have excellent performance in liver and bowel 
disease prediction but poorly in obesity [52–54]. However, by then, DL 
models have not been evaluated. In 2019, LaPierre et al. [37] investi-
gated the DL performance of gcforest and AutoNN (based on DNN) on 
this dataset using different feature extraction methods, the k-mer-based 
feature extraction strategy and the previously reported 
MetaPhlAn2-based feature extraction method. Results show that 
gcForest yielded the highest AUC of 0.65, while the AutoNN achieved 
the best accuracy on Type 2 diabetes (T2D) prediction. Later in 2020, the 
study further utilized DeepMicro, a framework that incorporated 
various AEs, including shallow autoencoder, deep autoencoder, varia-
tional autoencoder, and convolutional autoencoder, to learn a 
low-dimensional embedding for microbiome profiles [38]. This model 
outperforms the other approaches including SVM, RF and ANN in 
obesity prediction (AUC = 0.659) and other diseases including T2D, 
cirrhosis and bowel diseases [38]. Similarly, Montanez et al. [39] 

Table 2 (continued ) 

Ref Cases Data Sources Models Deelopment 
Process 

Main Outcomes Baselines Year 

0.953, r = 0.961, and k =
0.846). 

Yue et al. 
[70] 

Liing 
enironment 

164 million Google 
street iew images 

CNN Hyperparameters: loss 
function: sigmoid cross 
entropy with logits; optimizer: 
adam; batch size: 20; 
epochs:20; learning rate: 1 ×
10^− 4;V 
alidation: internal. 

Accuracy: street greenness: 
88.70%; presence of 
crosswalks: 97.20%; non-single 
family homes: 82.35%; single 
lane roads: 88.41%; isible 
utility wires: 83.00%; side 
walks: 84.5%. 

N/A 2022 

Shermila 
et al. 
[71] 

Food 
classification 
and calorie 
assessment 

Twenty different 
types of fruits and 
egetables 

RNN; LSTM Hyperparameters: not 
mentioned.V 
alidation: not mentioned. 

Accuracy: 99.15%; precision: 
9.8%; recall: 8.7%; specificity: 
98.26%. 

N/A 2023 

Josephin 
et al. 
[72] 

Food 
classification 
and calorie 
assessment 

Twenty different 
types of fruits and 
egetables: total of 
oer 41,509 images 

Combination 
of RNN and 
LSTM. 

Hyperparameters: not 
mentioned.V 
alidation: internal; 5-fold 
cross-validation. 

Accuracy: 99.36%; precision: 
98.9%; recall: 99.15%; 
specificity: 98.07%. 

Segmentation-based 
multi kernel-based 
support vector 
machine; deep 
conolutional neural 
network; Faster 
recurrent conolutional 
neural network. 

2023 

Abbreiations: LSTM: long short-term memory; DL: deep learning; ANN: artificial neural network; SVM: supporting vector machine; RF: random forest; AUC: area under 
the cure; CNN: conolutional neural network; DNN: deep neural network; NB: naïe bayes; LR: logistic regression; DT:decision tree; RNN: recurrent neural network. 
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Table 3 
Summary of selected articles related to body fat estimation.  

Ref Cases Models Data Sources Deelopment 
Process 

Main Outcomes Baselines Year 

Langner 
et al. 
[77] 

Body fat 
segmentation 

Fully 
conolutional 
networks (U- 
Net; -Net) 

The study Tellus and the study 
BetaJudo: BMI up to 40 kg/m2 

Hyperparameters: learning 
rate: 0.0001; batch size:1; 
optimizer: Adam optimizer.V 
alidation: external; 20 scans 
from the BetaJudo study. 

Dice score: 
U-Net (0.97–0.99 for 
AT; 0.99 for SAT) 
-Net (0.92–0.98 for 
AT; 0.98–0.99 for 
SAT). 

Human manual 
segmentation 
analysis. 

2019 

Liu et al. 
[78] 

Body 
composition 
analysis 

ABC-Net The hospital of the uniersity of 
Pennsylania: unenhanced 
low-dose CT scans of 38 
patients (BMI:17.27–38.28 
kg/m2) 

Hyperparameters: trained 
using a combination of dice 
loss and cross-entropy loss; 
learning rate: adjusted using a 
warm restarts strategy.V 
alidation: internal; 5-fold 
cross-validation. 

92–98% in common 
accuracy metrics (F1- 
score, precision, 
recall). 

DeepMedic; 3D U- 
Net; Net; 
Dense -Net. 

2020 

Paris et al. 
[79] 

Body 
composition 
analysis 

Deep CNN Clinical centers and hospitals 
from Canada, United States, 
France, and the Netherlands: 
CT scans of 893 patients (BMI: 
28.0 (±6.1) kg/m2) 

Hyperparameters: not 
mentioned.V 
alidation: internal validation. 

Dice similarity 
coefficient compared 
with manual 
segmentation based 
on CT scans: skeletal 
muscle: 0.983 ±
0.013 
intermuscular: 0.900 
± 0.034;V 
AT: 0.979 ± 0.019; 
SAT: 0.986 ± 0.016. 

Human manual 
segmentation 
analysis. 

2020 

Kafali et al. 
[80] 

Body fat 
segmentation 

2D U-Net; 3D U- 
Net; ADC 3D U- 
Net 

Habitual diet and aocado trail: 
87 participants with 164 MRI 
exams (BMI:31.89 ± 4.45) 

Hyperparameters: not 
mentioned.V 
alidation: not mentioned. 

Mean 3D dice scores: 
ADC 3D U-Net: 0.96 
for VAT, 0.99 for SAT; 
2D U-Net: 0.96 for 
SAT; 0.77 for VAT 
3D U-Net: 0.95 for 
SAT; 0.74 for VAT. 

N/A 2021 

Langner 
et al. 
[81] 

Body 
composition 
analysis 

Residual 
network 50 

UK Biobank: 40,264 
participants (BMI: 14–62 
kg∕m2) 

Hyperparameters: pre-trained 
on ImageNet and optimized 
with Adam at batch size 32 
with online augmentation by 
random translations. After 
5000 iterations, the base 
learning rate of 0.0001 was 
reduced by factor 10 and 
training continued for another 
1000 iterations.V 
alidation: external; dataset Dc. 

Test dataset: 
SE:0.91 
SP:0.99 
PP: 0.94 
NP: 0.98. 

Body composition 
measurements from 
the same MRI data 
based on volumetric 
multi-atlas 
segmentation.s 

2021 

Majmudar 
et al. 
[82] 

Adiposity 
assessment 

CNN Recruited 134 healthy adults 
(BMI:18.5–51.6 kg/m2) 

Hyperparameters: not 
mentioned.V 
alidation: external validation; 
four smartphone images of 
each participant in an “A" 
pose and associated reference 
measurements for total body 
fat percentage. 

MAE: 2.16 ± 1.54%. Commercial body 
composition analysis 
methods. 

2022 

Langner 
et al. 
[83] 

Body 
composition 
analysis 

Residual 
network 50 

UK biobank: 38,916 adults’ 
MRI scans 

Hyperparameters: not 
mentioned.V 
alidation: internal; 10-fold 
cross-validation. 

Mean absolute 
percentage error: 
<3%. 

N/A 2022 

Bhanu et al. 
[84] 

Body fat 
segmentation 

3D U-Net and 
RGA-U-Net 

Geri-LABS study: MRI scans of 
90 healthy community- 
dwelling older adults (BMI 
23.75 ± 3.65 kg/m2) 

Hyperparameters: 
batch size: 16; epoch:250.V 
alidation: internal; random 
4:1 split of the dataset into 
training and validation sets. 

Dynamic strength 
index: score for 
training (3 class): U- 
Net: 0.74–0.91); RGA- 
U-Net: 0.88–0.94. 

N/A 2022 

Wu et al. 
[85] 

Abdominal 
adipose tissue 
segmentation 

CNN (2D 
competitie 
dense fully 
conolutional 
network) 

Generation R Study: 2920 
children MRI scans 

Hyperparameters: not 
mentioned.V 
alidation: internal. 

Dice similarity 
coefficient: 
SAR: 0.96; VAT:0.89. 
v 
olumetric similarity: 
SAT: 0.98; VAT: 0.93 
MAE: 
SAT: 2.5%; VAT: 
4.7%. 

Manual 
segmentation.s 

2023 

Schneider 
et al. 
[86] 

Abdominal fat 
quantification 

CNN Single-center study at 
integrated research and 
treatment center: patients 
with obesity (BMI ≥35 kg/ 
m2), the dataset involed 331 

Hyperparameters: not 
mentioned.V 
alidation: internal; 5-fold 
cross validation. 

Dice coefficient: 
SAT: 0.954; VAT: 
0.889. 
MPE: 
SAT: 0.7%; VAT:  

2023 

(continued on next page) 
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proposed a SAERMA (stacked autoencoder rule mining algorithm) 
model, which combines several techniques, including quality control, 
association analysis, rule mining, and DL, to extract meaningful features 
from the genetic data and classify individuals based on their risk of 
developing extreme obesity. The algorithm uses a SAE to perform deep 
feature extraction and initialize the weights of a multi-layer perceptron 
neural network (MLPNN) for classification analysis. Rule mining is used 
to identify the most frequent SNPs among individuals in cases and 
controls and extract rules from them. The resulting rules are then used as 
input features in the SAE to capture the relationships between SNPs and 
improve the performance of the MLPNN. SAERMA has been shown to 
outperform other methods for identifying epistatic interactions in GWAS 
for extreme obesity, and it has the potential to be applied to other 
complex diseases as well [39]. In 2022, a multimodal variational in-
formation bottleneck (MVIB) was developed, MVIB integrates abun-
dance and marker gene data from the gut microbiome to predict three 
diseases: obesity, T2D, and colorectal cancer [47]. The authors 
demonstrate that MVIB outperforms existing state-of-the-art methods on 
multiple benchmark datasets, achieving an AUC of 0.743 on the obesity 
cohort [47]. The study also compares MVIB with other DL models, 
including DeepMicro, and shows that MVIB achieves better performance 
on all three diseases [38,47]. Additionally, the authors investigate the 
generalization ability of MVIB by performing cross-study experiments, 
which demonstrate that MVIB can generalize well to unseen datasets 
from different studies [47]. Overall, this work provides a valuable 
contribution to the field of microbiome-based obesity prediction and 
highlights the potential of DL models in this area. 

Other than omics data processing, studies have also utilized DL to 
process data collected from motion sensors, media, and mobile apps to 
capture obesity-related traits and risk factors [40–44]. Moreover, recent 
developments have introduced various methods for estimating BMI 
values based on visual information, such as face images or 3D body 
images [48]. These approaches, which extrapolate anthropometric 

features from face images or 3D body images, have significantly 
enhanced the accuracy of BMI estimation [48]. A recent study shows 
that in addition to projections based on cross-sectional data, DL was first 
utilized in longitudinal obesity prediction [46]. The LSTM models using 
temporal data can predict childhood obesity in the next 1, 2, and 3 years 
with high accuracy [46]. Furthermore, DL has also been harnessed in 
computer-aided diagnosis systems for detecting obesity based on ther-
mal images. Various CNN models were evaluated for their ability to 
classify subjects as obese or normal. Among these models, the custom 
CNN network (Custom-2) exhibited superior performance, achieving a 
weighted average F1-score of 0.92 and an AUC of 0.948 [45]. This 
DL-based approach delivered results comparable to traditional ML 
methods like scale-invariant feature transform for feature extraction. 

To sum up, according to the research included in the study, CNNs are 
exceptional in natural language processing data analysis, including 
audio, text, and image processing related to obesity, and unsupervised 
method AEs are specialized in feature engineering and dimensionality 
reduction process [43,44,55,56]. Embeddings are a foundational 
component in DL applications within obesity prediction, providing a 
means to simplify and condense complex biological data into actionable 
insights. The exact models mentioned employ embeddings in nuanced 
ways, tailoring them to the specificities of the dataset at hand, which is a 
testament to the versatility and power of DL techniques in this field [37]. 
However, to our knowledge, DL has not been specifically applied in 
multi-omics research related to obesity yet. Therefore, further research 
may yield unexpected results in obesity surveys. 

4.2. Obesity management 

The goal of obesity management is to keep a healthy lifestyle and 
avoid undesired weight gain. Although dietary control and exercise 
intervention are state-of-the-art in obesity treatment, standard therapy 
and restricted exercise schedules remain difficult to accomplish. 

Table 3 (continued ) 

Ref Cases Models Data Sources Deelopment 
Process 

Main Outcomes Baselines Year 

MRI examinations and 12,422 
abdominal MRI slices 

0.8%. 
RMSPE: 
SAT: 0.026; VAT: 
0.017. 

Josephin 
et al. 
[87] 

Abdominal fat 
quantification 

U-Net 136 adolescents 
(BMI:13.20–25.19 kg/m2) 

Hyperparameters: learning 
rate: 0.0001; epochs:100; 
batch size: 8.V 
alidation: internal; 5-fold 
cross validation. 

Dice similarity 
coefficient: outer 
region: 0.96; inner 
region: 0.89; SAT: 
0.87; VAT: 0.81. 

N/A 2023 

Abbreiations: BMI: body mass index; VAT: visceral adipose tissue; SAT: subcutaneous adipose tissue; CT: computed tomography; CNN: conolutional neural network; 
SE: sensitivity; SP: specificity; PPV: positive predictiev value; NPV:negative predictive value; MRI: magnetic resonance imaging; MAE: mean absolute error; MAPE: 
mean absolute percentage error; MPE:mean percentage error; RMSPE: root mean squared percentage error. 

Fig. 3. Summary of deep learning application in obesity.  
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Smartphone apps and portable devices have been invented to enable 
weekly individual coaching and health behavior monitoring, which 
provide opportunities for DL utilization [57–59]. There are several 
sub-domains in obesity management, which can be differentiated into 
three categories: dietary management, fitness guidance, and living 
environment adjustment [60–72]. Studies have shown that patients who 
possess the potential risks for metabolic syndrome could benefit by 
giving guidance with DL models [63]. After the analysis of residents’ 
physical fitness data, DL can formulate personalized exercise programs 
for each individual, and provide sports education as well as intelligent 
guidance [73]. 

Dietary control is fundamental in obesity management, apps and 
devices that require manual input have been invented to record daily 
calorie intake [74]. However, automated dietary monitoring is more 
reliable than manually food logging. An early dietary monitor system 
combined with a programmable social robot can automatically track 
diet targeting childhood obesity prevention [75]. With the constant 
updating of computer versions, multiple CNN-based models have been 
adopted to extract the representation from photographs in the 
open-source food dataset [61,66–68,76]. Survey has shown that these 
models can segment diverse, multi-food cuisines automatically and es-
timate the calories, which enables image-based dietary intake moni-
toring [76]. A noteworthy instance of these advancements is the 
application of the pre-trained ResNet-152 architecture, which stands out 
with its depth of 152 layers and the incorporation of shortcut connec-
tions to promote better information flow. This complex architecture uses 
convolutional layers to perform deep feature extraction from food image 
datasets, efficiently preparing the data for subsequent classification by 
ML classifiers into distinct food categories [61]. Complementing the 
ResNet-152’s capabilities, the Calorie Mama API, a DL-based food image 
recognition tool, has been employed to refine the analysis of food images 
further. It offers comprehensive nutritional information, including cal-
ories and nutrient content, quantified in the SI unit of Kcal/kg. This 
technology plays a critical role in aggregating calorie data for individual 
restaurants, acting as a marker of obesogenic environments, thus 
aligning with the Food and Drug Administration’s nutritional labelling 
requirements [69]. In a similar vein, the proprietary models DEEPFIC 
(deep learning-based food item classification) and MDEEPFIC(modified 
deep learning-based food item classification), which also utilize DNN, 
have been tailored to deliver precise feature extraction and calorie 
calculation [71,72]. The DEEPFIC employs an architecture that in-
tegrates image preprocessing techniques—like contrast stretching and 
histogram equalization—to refine input images, followed by RNN and 
Bi-LSTM networks that capture spatial and temporal features for effec-
tive classification. The calorie values are then computed using a 
regression model based on these features [71]. In contrast, MDEEPFIC 
uses improved watershed segmentation for image processing, coupled 
with a modified dragonfly optimization algorithm that enhances the 
accuracy of calorie estimations, particularly for fruits and vegetables of 
varying sizes. For example, an apple with skin is calculated to have 75 
kcal for a 130-g serving, and a banana has 108 kcal per 102 g, by 
correlating the mass of the food item with a standardized calorie chart. 
Both models demonstrate their efficacy by providing precise caloric 
values of food items, which are crucial for dietary management and 
obesity prevention [72]. 

CNN-based algorithms have been instrumental in evaluating the 
living environment’s impact on obesity, revealing connections between 
greenery, urban design, and obesity prevalence [62,64,65,70]. Studies 
indicate that features like green streets, crosswalks, and mixed building 
types correlate with lower obesity prevalence [62]. Additionally, areas 
with greater median family income tend to have greener streets and 
fewer commercial buildings or apartments, indicating a socioeconomic 
dimension to the neighborhood characteristics contributing to obesity 
[62]. And both horizontal, vertical greenery and the proximity of green 
levels can impact body weight [65]. Within this realm of research, a 
noteworthy application involved employing the VGG-16 model—a deep 

convolutional network famed for its 16 weighted layers and high image 
recognition accuracy. This model demonstrated proficiency by 
analyzing 31, 247, 167 images from Google Street View, which facili-
tated the generation of neighborhood characteristic indicators with 
significant implications for obesity and physical activity outcomes, 
reaching accuracy levels ranging from 85% to 93% [64]. The utility of 
the VGG-16 model extended beyond mere identification of environ-
mental traits; it was instrumental in extracting and classifying features 
indicative of the built environment’s health impact. This was achieved 
through an architecture that integrates multiple convolutional layers, 
max-pooling layers, and fully connected layers—features it shares with 
other leading architectures such as AlexNet, ResNet, and Inception. 
These models, pre-trained on extensive image datasets like ImageNet, 
empower researchers to fine-tune algorithms for the precise detection of 
environmental factors linked to obesity [65]. This approach echoes 
methodologies employing the robust CNN framework to extract urban 
design features from Google Street View images, assessing their impact 
on chronic diseases including obesity in the U.S., with an effective image 
recognition architecture comprising convolutional, pooling, and fully 
connected layers, paralleling those in similar studies [70]. 

4.3. Body fat estimation 

BMI is usually implemented as a threshold in clinical practice to 
define obesity and overweight. However, it cannot discern the fat 
component from lean tissues of body mass, therefore it can’t diagnose 
abdominal obesity or muscular obesity [77–87]. Thus, body composi-
tion is more appropriate for accessing adiposity levels in older adults, 
athletes, or individuals who have lost muscle due to pathological rea-
sons. Callipers, bioelectrical impedance analysis, computed tomography 
(CT) scans, and magnetic resonance imaging (MRI) are commonly used 
methods in determining body composition and body fat segmentation 
[77,82]. However, several limits of these methods such as the low ac-
curacy of the former and the high cost of the latter have restrained their 
large-scale utilization. Addressing these challenges, the ABCNet emerges 
as an innovative DL-based approach detailed in the recent study [78]. 
This 3D dense-structure network is engineered specifically for the seg-
mentation and analysis of body tissue composition from 
body-torso-wide low-dose CT images, employing a basic-vonv unit and a 
series of dense blocks to create a deep yet memory-efficient network. 
The ABCNet has shown proficiency in automatically segmenting key 
body tissues—including subcutaneous and visceral adipose tissue, 
skeletal muscle, and paraspinal muscle—essential for both research and 
clinical evaluation. Its optimization using dynamic soft dice loss and 
coarse-to-fine tuning has significantly improved segmentation accuracy. 
The network has been validated on a dataset of 200 low-dose CT scans, 
demonstrating high accuracy and robustness, and shows promise for 
implications in diseases such as cardiovascular and metabolic disorders, 
and monitoring post-chemotherapy outcomes [78]. These findings 
represent a substantial advance in DL applications for body composition 
analysis, potentially overcoming the constraints of traditional methods 
[79,81,83]. 

Current research indicates that excess accumulation of visceral adi-
pose tissue (VAT) is strongly linked to a poor metabolic and inflamma-
tory profile compared to subcutaneous adipose tissue (SAT) [88]. SAT 
primarily functions for long-term energy storage, while VAT has higher 
metabolic and hormonal activity due to adipokine release. An 
MRI-image-based DL method can quantify SAT and VAT, and reduce the 
time-consuming work of building the ground-truth images that are 
required to train DL models [83]. Complementing this effort, the study 
introduced two advanced fully convolutional network architectures, 
U-Net and DeepLabV3+, tailored for abdominal segmentation [86]. The 
modified U-Net with residual connections and the atrous 
convolution-utilizing DeepLabV3+, pre-trained on the COCO dataset, 
were fine-tuned on a dataset of 2820 abdominal MRI scans. This 
adjustment and training were geared towards enhancing the 
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segmentation of SAT and VAT, employing binary cross-entropy loss and 
dice loss for optimization, and augmenting the training data with 
various transformations to bolster model robustness [86]. Similarly, 
2D-CDFNet (two-dimensional competitive dense fully convolutional 
network) can automate the quantification of abdominal fat in adoles-
cents using MRI scans. This model, trained on a dataset of 2820 
abdominal MRI scans from children aged 13–18 years, employs a 
specialized 2D (two-dimensional) CNN architecture to segment SAT and 
VAT effectively [85]. The 2D-CDFNet includes a feature extraction 
module to glean details from MRI images, a context aggregation module 
to enhance the data’s contextual integrity, and a segmentation module 
for accurate tissue differentiation, demonstrating strong agreement with 
manual segmentations [85]. Such DL approaches, including the appli-
cation of the U-Net architecture for abdominal segmentation, provide 
precise measurements of abdominal adipose tissues, essential for a 
consistent evaluation of changes in SAT and VAT, especially in younger 
populations [87]. By using the U-Net architecture, popular for its per-
formance on small medical image datasets, the author trained two 
models: one for abdominal wall segmentation and another for SAT and 
VAT classification. Combining region-based and pixel-based training, 
the technique precisely measures abdominal adipose tissue in young 
individuals, providing a consistent evaluation of changes in abdominal 
VAT and SAT [87]. However, not all metadata can be inferred with the 
proposed DL model because the required information may be lost by 
different preprocessing approaches or the images may not be acquired in 
a standardized manner [83]. In this case, proper quality control of the 
data source and the external validation of an open-sourced DL frame-
work is necessary to overcome such obstacles [81,83,84]. 

5. Discussion 

The primary objective of this study was to explore the application of 
DL techniques in various aspects of obesity research and clinical prac-
tice, including obesity prediction, management, and body fat estima-
tion. Our results reveal the substantial potential of DL in enhancing the 
accuracy, efficiency, and precision of these critical processes. In com-
parison with traditional ML methods, our findings underscore the su-
periority of DL in the context of obesity prediction. We demonstrated 
that DL models, particularly stacked autoencoders, are exceptionally 
proficient at capturing complex interactions between SNPs to classify 
obesity subtypes. These results align with previous studies that have also 
recognized the promise of DL in managing the intricacies of genomic 
data analysis, but we extend these findings to the specific context of 
obesity research [39]. We extended our inquiry to the 
metagenome-based profiles, shedding light on the novel prospects of DL 
in this domain. In this respect, our work adds a novel dimension to the 
literature as previous studies have shown strong performance in liver 
and bowel disease prediction, yet have fallen short in obesity prediction. 
This research, however, brought DL into the limelight, exemplified by 
the noteworthy results from our use of gcForest and AutoNN [37]. 

Additionally, our exploration of DL’s role in dietary management, fitness 
guidance, and the impact of living environments in obesity management 
is pioneering. These findings are aligned with emerging studies 
demonstrating the potential of DL in optimizing health behavior moni-
toring and personalized health intervention. 

In the domain of obesity prediction, DL outperforms ML methods, 
particularly in handling complex data types like genetic variants and 
metagenomic profiles. Furthermore, DL’s applications extend to obesity 
management. Smartphone apps and portable devices equipped with DL 
enable personalized coaching and health behavior monitoring. DL 
models can automatically monitor dietary intake through image-based 
recognition, offering a more reliable and user-friendly alternative to 
manual food logging. They also play a crucial role in developing 
personalized exercise programs based on physical fitness data. More-
over, DL aids in body fat estimation by offering innovative methods for 
assessing adiposity levels. Visual body composition models can estimate 

body fat percentage directly from 2D digital photographs, making it a 
convenient and cost-effective tool for daily monitoring. DL is also inte-
grated with traditional methods, such as CT scans and MRI, to automate 
the analysis of body composition phenotypes, saving time and resources 
for clinicians. 

Our results underscore the transformative power of DL in handling 
intricate data types across the spectrum of obesity research and clinical 
practice. This includes but is not limited to, managing genomics data for 
obesity prediction, developing personalized exercise programs and di-
etary management strategies, and evaluating the impact of living envi-
ronments on obesity prevalence. DL’s ability to uncover complex 
patterns in large datasets, especially in the multi-omics context, signifies 
its potential to elucidate the complex interplay of genetic and environ-
mental factors contributing to obesity. Most of the selected papers of DL 
in obesity research were published within the late two years. To our 
knowledge, this is the first review focusing on the DL application in 
obesity research. Our study acts as a cornerstone in the growing litera-
ture on the application of DL in obesity research and clinical practice. It 
opens doors to innovative solutions and underscores the pivotal role of 
DL in advancing our understanding of obesity and its management. For 
future work, researchers should evaluate each DL algorithm for accuracy 
and robustness on external datasets when attempting to expand its uti-
lization. Moreover, research that focuses on integrating multiple omics 
data to unravel the complex web of factors that contribute to obesity 
seems promising. 

In conclusion, this comprehensive review has shed light on the 
transformative role of DL within the domain of obesity research and 
clinical practice. Our extensive analysis reveals that DL holds remark-
able promise across multiple dimensions of obesity, including predic-
tion, management, and body fat estimation. One of the key contributions 
of this study to the existing body of literature is the exploration of DL’s 
untapped potential in multi-omics research related to obesity. By 
amalgamating genetic, proteomic, and metagenomic data, DL offers the 
tantalizing prospect of unveiling fresh insights and innovative solutions. 
DL technology can significantly enhance the precision and effectiveness 
of obesity diagnosis and management. With its prowess in data extrac-
tion from diverse sources, such as genetic and environmental data, 
motion sensor data, and even longitudinal data, DL empowers clinicians 
and researchers alike to gain comprehensive insights into obesity- 
related traits and risk factors. This review sets the stage for further 
research into DL applications, encouraging ongoing exploration of its 
potential in the multifaceted world of obesity research and clinical 
practice. For future research, it’s crucial to assess the accuracy and 
robustness of DL algorithms on external datasets as they are extended for 
broader applications. Additionally, promising prospects lie in studies 
that aim to integrate various omics data to untangle the intricate web of 
factors underlying obesity. 

5.1. Limitations and challenges 

First, this study excluded conference articles, books, and unpub-
lished full-text papers, this could have constrained access to alternative 
research and outcomes. Nevertheless, this selection was made to align 
with the anticipation of presenting verified findings through peer- 
reviewed journal papers, which also follow the best practices norm in 
academic publishing. The second limitation is the restricted search for 
articles to only five online databases: i.e., PubMed, Embase, Web of 
Science, Scopus, and Medline. However, these databases were selected 
because they are among the most extensively applied and acknowledged 
worldwide, each index covers journals and articles across various dis-
ciplines, including medicine, engineering, and computer science, which 
are relevant to the current study. Hence, this thorough exploration still 
clearly portrays the present state of obesity research with DL methods. 
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[18] Bektaş M, Reiber BMM, Pereira JC, Burchell GL, van der Peet DL. Artificial 
intelligence in bariatric surgery: current status and future perspectives. Obes Surg 
2022;32(8):2772–83. 

[19] Chew HSJ. The use of artificial intelligence-based conversational agents (chatbots) 
for weight loss: scoping review and practical recommendations. JMIR medical 
informatics 2022;10(4):e32578. 

[20] Greco F, Salgado R, Van Hecke W, Del Buono R, Parizel PM, Mallio CA. Epicardial 
and pericardial fat analysis on CT images and artificial intelligence: a literature 
review. Quant Imag Med Surg 2022;12(3):2075–89. 

[21] Kozarzewski L, Maurer L, Mähler A, Spranger J, Weygandt M. Computational 
approaches to predicting treatment response to obesity using neuroimaging. Rev 
Endocr Metab Disord 2022;23(4):773–805. 

[22] Zhou X, Chen L, Liu HX. Applications of machine learning models to predict and 
prevent obesity: a mini-review. Front Nutr 2022;9:933130. 

[23] DeGregory KW, Kuiper P, DeSilvio T, Pleuss JD, Miller R, Roginski JW, et al. 
A review of machine learning in obesity. Obes Rev : an official j. Int. Assoc. Study 
of Obesity 2018;19(5):668–85. 

[24] Zhu T, Li K, Herrero P, Georgiou P. Deep learning for diabetes: a systematic review. 
IEEE J Biomed Health Inform 2021;25(7):2744–57. 

[25] Triantafyllidis A, Kondylakis H, Katehakis D, Kouroubali A, Koumakis L, Marias K, 
et al. Deep learning in mHealth for cardiovascular disease, diabetes, and cancer: 
systematic review. JMIR Mhealth Uhealth 2022;10(4):e32344. 

[26] Ian Goodfellow Heaton J, Bengio Yoshua, Courville Aaron, learning Deep. Genetic 
programming and evolvable machines 2018;19(1):305–7. 

[27] Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural 
networks for computer-aided detection: CNN architectures, dataset characteristics 
and transfer learning. IEEE Trans Med Imag 2016;35(5):1285–98. 

[28] Rumelhart DE, Hinton GE, Williams RJJN. Learning representations by back- 
propagating errors, vol. 323; 1986. p. 533–6. 

[29] Zimmer L, Lindauer M, Hutter F. Auto-pytorch: multi-fidelity MetaLearning for 
efficient and robust AutoDL. IEEE Trans Pattern Anal Mach Intell 2021;43(9): 
3079–90. 

[30] da Silva BLS, Inaba FK, Salles EOT, Ciarelli PM. Fast deep stacked networks based 
on extreme learning machine applied to regression problems. Neural Network : the 
official j. Int. Neural Network Soc 2020;131:14–28. 

[31] Nath S, Korot E, Fu DJ, Zhang G, Mishra K, Lee AY, et al. Reinforcement learning in 
ophthalmology: potential applications and challenges to implementation. The 
Lancet Digital health 2022;4(9):e692–7. 

[32] Gupta P, Sharma V, Varma S. A novel algorithm for mask detection and recognizing 
actions of human. Expert Syst Appl 2022;198:116823. 

[33] Kitchenham B, Charters S. Guidelines for performing systematic literature reviews 
in. Software Eng 2007;2. 

[34] Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for 
systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6 
(7):e1000097. 

[35] Webster J, Watson R. Analyzing the past to prepare for the future: writing a 
literature review. MIS Q 2002;26. 
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