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KEY POINTS

� Although laser-induced thermal therapy (LITT) initially was used as a salvage treatment of recurrent
gliomas that had exhausted standard treatment of care, it has evolved into a first-line treatment of
specific newly diagnosed high-grade gliomas.

� LITT has comparable results to surgical debulking in allowing maximal cytoreduction, minimizing
new neurologic deficits, prolonging malignant transformation, and improving overall and
progression-free survival.
INTRODUCTION

As with most novel techniques, laser-induced
thermal therapy (LITT) was initially met with some
skepticism for its role in the treatment for intracra-
nial pathologies. Over the last two decades, with
the help of real-time monitoring, the use of LITT
has expanded to a range of pathologies including
intracranial metastases, gliomas, radiation
necrosis, epilepsy, and so forth.1 Initial use was
typically limited—it was a salvage option for
tumors, when the standard approach failed. How-
ever, as more neurosurgeons used LITT, its effi-
cacy was obvious. With time, LITT has emerged
as a favorable treatment, possibly even first line
for certain pathologies. In glioma management,
there has been an increasing favorability for LITT
to even being considered comparable to current
“standards of care” of both newly diagnosed and
recurrent cases.
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NATURAL DISEASE COURSE OF GLIOMAS

Gliomas can be characterized as low grade and
high grade. Diffuse low-grade gliomas (DLGGs)
typically have a peak onset at the age of about
35 to 40 years. They tend to have a slow growing,
“silent” phase during which they could be found
incidentally on imaging. This is followed by a
symptomatic phase and then a progressive phase
which is often precipitated by transformation to
malignant, more high-grade gliomas.2 The median
survival in patients with low-grade astrocytomas is
about 5 years and death usually results due to ma-
lignant transformation.3

High-grade or malignant gliomas are muchmore
aggressive in their behavior and associated with a
poorer prognosis. Of note, about 80% of high-
grade, or malignant, gliomas are glioblastomas
(GBMs) and represent the most common primary
intracranial tumor in adults.4 There are increasing
molecular data that is being reported suggesting
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subgroups may survive longer.5,6 The peak onset
for anaplastic astrocytoma is usually at age 40 to
50 years, whereas for GBMs, it is 60 to 70 years.3

Primary GBMs tend to occur in older patients
(mean age 55), whereas for secondary GBM, it is
in younger adults (<45). The medial survival,
despite aggressive treatment, is approximately
3 years for anaplastic astrocytomas and 1 year
for GBMs.3
TREATMENT OF GLIOMAS AND THE CONCEPT
OF CYTOREDUCTION

The standard of care for gliomas, especially high-
grade gliomas such as GBMs, is surgical resection
with adjuvant chemotherapy and radiation.4,7 In
the case of DLGGs, extensive cytoreductive sur-
gery with removal of the anaplastic foci can delay
malignant transformation, hence altering the natu-
ral history.2,3,8 For both low-grade and high-grade
gliomas, a gross total resection is associated
with longer survival and improved neurologic
outcomes.3,9

As would be expected, studies have shown that
maximal resection had more benefit compared
with partial resection or biopsy.10,11 Sanai and col-
leagues conducted a literature search regarding
extent of resection (EOR) and outcomes; for low-
grade gliomas, the mean survival improved from
61.1 months to 90.5 months with a greater EOR.
In high-grade gliomas, the improvement was
from 64.9 to 75.2 months in World Health Organi-
zation (WHO) Grade III gliomas and 11.3 to
14.2 months in WHO grade IV gliomas.9 Brown
and colleagues12 had similar results and
concluded that patients with newly diagnosed
GBMs who underwent a gross total resection
were 61% more likely to survive 1 year, 19%
more likely to survive 2 years and 51% more likely
to be progression free at 1 year compared with
those who had subtotal resection. In regard to
EOR, ranges from 78% to 98% have been shown
to provide a survival benefit.13,14

There remains a balance to be struck between
achieving a gross total resection and preventing
any new neurologic deficits. Associated technol-
ogy such as intraoperative MRI, use of fluorescent
5-aminolevulinic acid, artificial intelligence, virtual/
augmented reality, and more recently connectom-
ics have improved prospects of maximal safe
resection.4,15–20 Beyond the EOR, the adjunct of
standard chemotherapy and radiotherapy, that
is, Stupp protocol, for GBMs, can provide a signif-
icant survival benefit.7

There can be microscopic residual tumor
beyond the contrast enhancement and so, a sig-
nificant chance of recurrence despite near 100%
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resection of visual tumor.12,21 Stemming from the
records of Dandy, who performed a hemispherec-
tomy for tumor resection of low-grade gliomas in
hopes to irradicate all tumor contents, the concept
of supramaximal resection has gained mo-
mentum.22 Beyond just resection of the contrast-
enhancing tumor, it has been found that resection
of the areas with abnormal Fluid-Attenuated Inver-
sion Recovery (FLAIR) and T2 noncontrast
enhancement surrounding the contrast-enhanced
tumor is associated with improved outcomes.23–26

Vivas-Buitrago and colleagues conducted a
study looking at 101 patients with newly diag-
nosed GBMs who underwent resection of their tu-
mors. They found that supramaximal resection
(SMR) was associated with improved overall sur-
vival in patients with Isocitrate Dehydrogenase
(IDH)-wildtype GBMs compared with patients
who underwent just gross total resection, howev-
er, that finding was true for 20% Supramaximal
resection (SMR) and there was no significant effect
on overall survival when that percentage
exceeded 60%.27 Although resection of T2 FLAIR
hyperintense region surrounding the tumor is likely
to contain microscopic infiltrative tumor cells, it
also contains functional brain parenchyma. There-
fore, it can be challenging to find a balance be-
tween maximal diffuse tumor resection and
preservation of “normal” functional brain paren-
chyma. One feasible solution proposed by this
group included awake craniotomies with cortical
and subcortical mapping and neuropsychological
testing when feasible based on tumor location
and symptomology. Although the concept of
supramaximal resection is believed to lead to bet-
ter outcomes from the tumor burden standpoint, it
is important to consider and balance this with
preservation of neurologic function and minimize
development of new neurologic deficits.28
RADIOFREQUENCY ABLATION FOR
INTRACRANIAL TUMORS/GLIOMA

Several minimally invasive techniques were intro-
duced in efforts to achieve the cytoreductive ef-
fects of surgery without the associated, morbid
complications. These include laser, cryotherapy,
radiofrequency microwaves, and focused ultra-
sound.29 Radiofrequency ablation is a thermal
ablation method which delivers electromagnetic
radiation to heat tissue leading to coagulative ne-
crosis.30 It could be used to treat deep-seated
intracranial tumors and could be coupled with
MR imaging.31 It also has the ability to initiate a
cell-mediated immune response against the tumor
cells, producing a long-term immunity. Some dis-
advantages include formation of vascular
lth and Social Security de ClinicalKey.es por Elsevier en abril 28, 2023. 
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thrombosis, dependence on electrical and thermal
tissue conductivity, subject to “heat sink” effect
when near vascular structures thus sparing cancer
cells close to those blood vessels and formation of
a hypoxic microenvironment which could promote
tumor progression. Anzai and colleagues32 found
good local control in their 14 primary and metasta-
tic brain tumors treated with radiofrequency
ablation.
ADVANTAGES OF LASER-INDUCED THERMAL
THERAPY

LITT has evolved over the past two decades as a
minimally invasive technique that allows for ther-
mal ablation of several intracranial tumors.
Although its uses were initially limited and met
with much skepticism, it has gained popularity
over the years as it proved its efficacy and safety
for several intracranial pathologies. One of the
most common uses for LITT today is high-grade
gliomas—both newly diagnosed and recurrent.
Some of the key characteristics that allowed LITT
to grow popular among the neurosurgery world
include its efficacy in achieving similar cytoreduc-
tion of tumors as does standard surgical resection
and allowing for real-time monitoring of tumor
ablation, hence minimizing damage to nearby
eloquent areas and lowering risk of developing
new neurologic deficits.

Some studies suggested a benefit of LITT over
surgical resection when treating deep-seated tu-
mors. Barnett and colleagues33 conducted a sys-
tematic review and meta-analysis specifically for
high gliomas in or near eloquent area of the brain.
Their extent of ablation (EOA) was 85.4%with LITT
compared with an EOR of 77% with open crani-
otomy. In addition, the complication rate was
lower for LITT compared with open craniotomy—
5.7% versus 13.8%. There was a statistically sig-
nificant improvement in EOR/EOA and a reduction
in major neurocognitive complications with LITT
compared with craniotomy. Specifically for high-
grade tumors in eloquent brain regions, which
are otherwise deemed inoperable or if surgery is
offered, it is often limited to just open biopsy or
partial resection, LITT provides an acceptable
alternative with benefits that are comparable, if
not, superior, to those of surgical resection.

Di and colleagues calculated the EOA achieved
in their series of 20 patients who underwent LITT
for newly diagnosed glioblastomas. They found
that in patients with greater than 70% EOA, there
was significantly improved progression-free sur-
vival (PFS) and a trend toward improved overall
survival. PFS was further improved when LITT
was followed by early chemotherapy compared
Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library 
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with delayed treatments.34 A study conducted by
de Groot and colleagues35 concluded that median
overall survival after LITT with subsequent chemo-
therapy and radiation was similar to those who had
surgical resections.

Mohammadi and colleagues36 assessed the
EOA in 24 patients who underwent LITT for recur-
rent and newly diagnosed high-grade gliomas.
They found that with greater extent of tumor
coverage with laser ablation, as defined by tumor
damage threshold lines, there was improved
PFS. They concluded that the cytoreductive effect
of hyperthermia via laser ablation was equivalent
to that from surgical debulking. Similarly, Shah
and colleagues37 reported a statistically significant
difference in local control when patients under-
went greater than 85% EOA compared with
�85% EOA. Their time to recurrence was
56 months in the greater than 85% EOA group
compared with 12.3 months in the �85% group.
They demonstrated that EOA was the strongest
predictor of local control and greater EOA corre-
lated with better local control for multiple types
of lesions. As previously mentioned, LITT may
show superiority as a treatment option for deep-
seated tumors or those in areas of eloquence,
when compared with open resection.33 Although
the results of these studies are interesting, it
must be noted that open surgery and LITT do carry
an inherent difference—the physical cytoreduction
with surgery versus the ablative cytoreduction with
LITT. The significance of this difference seemed
intuitive in the past; however, as more studies
have surfaced, it ultimately brings this question
back into the spotlight.

A feature of LITT that sets it apart from other
techniques and contributed to its appeal is real-
time thermal monitoring. McNichols and col-
leagues described a computer-controlled laser
thermal therapy system, which they used to pro-
duce lesions in canine and porcine brains and
used MRI-based feedback to control the thermal
energy and laser ablation.38 This system was
effective in regulating heat, eliminating carboniza-
tion and vaporization, and protecting the fiber op-
tic applicators of the lasers. Ultimately, the MRI
estimation of thermal dose correlated with thermal
necrosis as seen in histologic evaluation. The
compatibility of LITT with real-time MRI thermom-
etry allows for safety and quality control thus add-
ing to the efficacy of the procedure for treating
intracranial lesions.39–41

Other benefits of LITT include ability to use mul-
tiple times without concerns for developing dose
toxicity, as with radiation, or resistance, as with
chemotherapy, patients tend to have shorter hos-
pital stays compared with open craniotomies with
of Health and Social Security de ClinicalKey.es por Elsevier en abril 28, 2023. 
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faster recoveries and also increased permeability
of therapeutic drugs due to disruption of the blood
brain barrier (BBB).1,42–44 Muir and colleagues45

published their cohort of patients who underwent
LITT multiple times for recurrent GBMs and found
that the patients tolerated the procedure well and
also had a meaningful survival considering the
procedure was used as a salvage treatment.
LASER-INDUCED THERMAL THERAPY FOR
GLIOMA
Laser-Induced Thermal Therapy for Recurrent
Gliomas

Although LITT has been proposed for multiple
uses intracranially, a common use is for malignant
glioma. Initially, LITT was reserved for tumors that
were deemed surgically inoperable or recurrent
despite having exhausted more traditional treat-
ment methods. LITT has its own unique benefits
for the treatment of recurrent gliomas. Recurrent
disease is often focal and smaller as it is often
found duringmore frequent surveillance and there-
fore is particularly amenable to laser ablation.44 In
addition, repeat surgery in a potentially already
frail patient can lead to morbidity and wound heal-
ing issues due to prior chemotherapy and radia-
tion. Last, salvage chemotherapy may be more
effective following laser ablation.
Compared with newly diagnosed gliomas,

recurrent gliomas are particular tougher to treat
and have a grim prognosis. Factors found to be
associated with poor postoperative survival in pa-
tients with recurrent GBMs included tumor loca-
tion in eloquent brain regions, Karnofsky
performance status � 80, and tumor volume
�50 cm3.46 Often times, at the time of recurrence,
many patients are not as healthy to tolerate further
open surgery. In fact, only about one of four pa-
tients with recurrent GBMs is candidates for reop-
eration.47 Especially in those instances, LITT offers
a safer alternative that can still decrease tumor
burden offering comparable cytoreductive effects
through ablation. Multiple studies have shown its
efficacy and safety in its use for recurrent
gliomas.48–56

Treatment with chemotherapy, whether that is
monotherapy or combination chemotherapeutic
drugs, has been studied as a potential treatment
option for recurrent high-grade glioma. Food and
Drug Administration (FDA) FDA-approved chemo-
therapeutic agents for recurrent high-grade gli-
omas are temozolomide, bevacizumab,
lomustine, and carmustine (intravenous or wafer
implants), as either single-drug treatment or in
combination with other chemotherapeutic drugs,
although no single regimen has proven to be
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superior to others for the treatment of recurrent
of progressive glioblastoma.47,57 Although no
studies have directly compared the efficacy of
LITT versus any chemotherapeutic regimens, indi-
vidual studies have shown comparable, if not su-
perior, results of LITT to those of chemotherapy.
In a study looking at the use of lomustine and bev-
acizumab for recurrent glioblastoma, the overall
survival was 9.1 months for the drug combination
and 8.6 months when lomustine was used alone
(P > .05) and PFS was 4.2 months in the combina-
tion group and 1.5 months in the single therapy
group.58 This can be compared with an overall sur-
vival of 11.6 months seen after 41 recurrent GBMs
were treated with LITT.56 A pooled analysis of all
available literature in which LITT was used to treat
recurrent GBMs, the authors found a pool overall
survival of 18.6 months, a pooled post-LITT sur-
vival of 10.2 months and a pooled PFS of
6.2 months.51 These values suggest that LITT
may be favorable to chemotherapy for the treat-
ment of recurrent, progressive glioblastomas.
Laser-Induced Thermal Therapy for Newly
Diagnosed Gliomas

LITT is often referred to as a salvage treatment op-
tion for recurrent gliomas that have been previ-
ously resected and exhausted adjuvant radiation
and chemotherapy. However, more recently, neu-
rosurgeons have started to offer this approach for
newly diagnosed glioma as well.48 This approach
has been especially offered for gliomas which are
deemed surgically inoperable due to deep-
seated locations or being near eloquent regions
of the brain or for patients who are deemed poor
candidates for open surgery due to comorbidities
or old age.44 Some of the tumor locations ideal
for upfront LITT therapy include the deep gray
matter structures such as thalamus and basal
ganglia, corpus callosum, or insula.
Ivan and colleagues showed their early results of

25 patients who underwent laser ablation for newly
diagnosed glioma. Their cohort had a mean overall
survival of 14.2 month and a complication rate of
3.4%.59 Similarly, Muir and colleagues60 pre-
sented their series of 20 patients with newly diag-
nosed, “inoperable” GBMs and concluded that
those patients had similar survival times and local
recurrence rates as patients who underwent surgi-
cal resection.
LITT seems to be a growing option for surgically

inaccessible, deep-seated lesions such as those
near the brainstem or deeper gray matter re-
gions.61 Shah and colleagues62 had a mean EOA
of 98.5% and mean PFS of 14.3 months in their
cohort of 74 patients who underwent LITT for
lth and Social Security de ClinicalKey.es por Elsevier en abril 28, 2023. 
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deep-seated gliomas that were deemed surgically
inaccessible. Ashraf and colleagues63 presented a
multi-institutional study reviewing the results of
LITT for lesions within the posterior fossa. It was
noted that the lesions tended to be smaller in
size compared with their supratentorial counter-
parts. The complication rate was approximately
24% and it was advised that extra caution must
be taken to prevent damage to surrounding neural
structures as there is relatively more surrounding
eloquent tissue in the posterior fossa compared
with the supratentorial space. Dadey and col-
leagues64 further demonstrated the importance
of precise and accurate placement of the laser
probe using stereotactic guidance to ensure effec-
tive ablation of these deep-seated lesions without
major complications. Other studies also supported
LITT as an effective option for posterior fossa
tumors.65,66
THE ROLE OF LASER-INDUCED THERMAL
THERAPY IN DISRUPTION OF THE BLOOD
BRAIN BARRIER

As noted earlier, LITT has been shown to increase
permeability of therapeutic drugs due to disruption
of the BBB. This may make it useful in salvage
cases as adjuvant chemotherapy may be more
effective following laser ablation. The BBB pre-
sents a unique obstacle in the physiology and
treatment of intracranial brain tumors, compared
with lesions elsewhere in the body. A variety of
specialized cell types including endothelial cells,
astrocytes, pericytes, microglia and neuron func-
tion together to regulate selective permeability
and cellular transport, hence regulating homeosta-
sis as well as cerebral blood flow. This vigilant
regulation further restricts the targeted delivery of
therapeutic drugs for the treatment of high-grade
gliomas.67

Furthermore, high-grade gliomas and intracra-
nial metastases also have the ability to generate
a blood-tumor barrier (BTB). Through angiogen-
esis and neovascularization, a hallmark character-
istic of GBMs, the tumors develop immature,
dilated, and leaky vessels. These create a high
interstitial pressure within the tumor itself and
lead to a more malignant phenotype of tumors.
In fact, the BTB is more permeable in the core of
the tumor compared with the periphery and the
BBB distinguishing the tumor from the normal
brain parenchyma is impermeable. These charac-
teristics allow for the malignant, aggressive nature
of these high-grade tumors while also creating a
barrier from the normal brain matter and vascula-
ture to prevent any therapeutic agents to enter.67
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In the past, some of the therapeutic methods
used to try to overcome these obstacles included
intrathecal delivery of chemotherapy drugs
through Ommaya reservoirs and direct delivery
to the tumor itself using chemotherapeutic wa-
fers.67–72 Bregy and colleagues73 did a literature
search yielding a total of 19 studies and 795 pa-
tients who underwent glial wafer implantation. It
was found that the mean overall survival time
increased from 14 months to 16.2 months when
Gliadel wafers were added on to standard treat-
ment of surgery, radiation and systemic chemo-
therapy. Overall, although these wafers did
marginally increase survival and local control,
they were associated with a high complication
rate, up to 42.7% in their cohort. For this reason,
the group recommended against using gliadel
wafers.43,74–78

The idea that hyperthermia can treat malignancy
has been around for some time and body hyper-
thermia was indeed used as a means to disrupt
the BBB and allow entrance of chemotherapeutic
agents. However, as these methods were sys-
temic, there was the risk of causing damage to
other parts of the body as well.67,79 This brought
about the concept of targeted hyperthermia in
hopes to directly provide thermal energy to the tu-
mor site, disrupting the BBB and BTB and also
treating the tumor cells themselves. In as early as
the 1980s, studies were conducted in which mi-
crowave radiator/sensors were implanted into
the site of GBMs or high-grade astrocytomas.80,81

The use of lasers to provide hyperthermia to tis-
sues had been seen for many years prior. Although
ruby and CO2, lasers had been used previously for
the treatment of tumors, it was the introduction of
the neodymium-doped yttrium aluminum garnet
(Nd-YAG) lasers that would lead to what we
currently use today for laser ablation of intracranial
tumors.82,83

Salehi and colleagues84 used a mouse model to
demonstrate the effects of LITT on the BBB and
BTB and found that there was local disruption of
the BBB and BTB leading to increased perme-
ability for up to 30 days following the procedure.
Specifically, the therapy decreased the integrity
of the tight junctions of this molecular barrier and
increased endothelial cell transcytosis. This,
then, allows large molecules including human im-
munoglobulins to pass through the targeted area.
In the mouse model, laser ablation and adjuvant
chemotherapy with doxorubicin, which is normally
not permeable across the BBB, led to increased
survival.

Leuthardt and colleagues43 calculated the de-
gree and timing of BBB disruption following laser
ablation in patients with recurrent GBM.
of Health and Social Security de ClinicalKey.es por Elsevier en abril 28, 2023. 
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Specifically, they calculated the vascular transfer
constant as an indicator of permeability as well
as serum levels of neuron-specific enolase. They
found that based on the values and their trends
following laser ablation, there was a peak of high-
est permeability of the BBB, within 1 to 2 weeks of
laser ablation, which declined and resolved within
4 to 6 weeks. This in turn suggested a therapeutic
window during which administering earlier adju-
vant chemotherapy may have maximal benefits
for these patients. Multiple clinical trials are under-
way, showing the benefits of different chemo-
therapy regimens and their efficacy when used in
conjunction with LITT.85–87
SUMMARY

LITT has evolved over the past decade and proved
its efficacy and safety for the treatment of a variety
of intracranial pathologies, including gliomas.
From being used solely as a salvage treatment of
recurrent gliomas, it now is often used first line
for certain newly diagnosed gliomas. It is compa-
rable to the standard treatment of surgical resec-
tion in allowing maximal ablative cytoreduction
while minimizing damage to surrounding eloquent
brain matter and thus improved overall and PFS
while maintaining a relatively low complication
rate. As neurosurgeons gain more experience
with the technique, it is believed that LITT will
continue to progress as a first-line cytoreductive
treatment for a number of intracranial pathologies.
CLINICS CARE POINTS
� Maximal resection/ablation is associated with
better outcomes in patients with high grade
gliomas.

� Laser ablation shows superiority over open
resection for the treatment of deep-seated,
“surgically inoperable”

� LITT may enhance the effects of chemothera-
peutic agents by increasing blood brain bar-
rier permeability.
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