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AIMS: We investigated left ventricular (LV) remodeling, mechanics, systolic and diastolic function,

combined with clinical characteristics and heart-failure treatment in association to death or heart-trans-

plant (DoT) in pediatric idiopathic, genetic or familial dilated cardiomyopathy (DCM), using interpret-

able machine-learning.

METHODS AND RESULTS: Echocardiographic and clinical data from pediatric DCM and healthy controls

were retrospectively analyzed. Machine-learning included whole cardiac-cycle regional longitudinal strain,

aortic, mitral and pulmonary vein Doppler velocity traces, age and body surface area. We used unsupervised

multiple kernel learning for data dimensionality reduction, positioning patients based on complex conglomer-

ate information similarity. Subsequently, k-means identified groups with similar phenotypes. The proportion

experiencing DoT was evaluated. Pheno-grouping identified 5 clinically distinct groups that were associated

with differing proportions of DoT. All healthy controls clustered in groups 1 to 2, while all, but one, DCM

subjects, clustered in groups 3 to 5; internally validating the algorithm. Cluster-5 comprised the oldest, most

medicated patients, with combined systolic and diastolic heart-failure and highest proportion of DoT. Cluster-

4 included the youngest patients characterized by severe LV remodeling and systolic dysfunction, but mild

diastolic dysfunction and the second-highest proportion of DoT. Cluster-3 comprised young patients with

moderate remodeling and systolic dysfunction, preserved apical strain, pronounced diastolic dysfunction and

lowest proportion of DoT.

CONCLUSIONS: Interpretable machine-learning, using full cardiac-cycle systolic and diastolic data,

mechanics and clinical parameters, can potentially identify pediatric DCM patients at high-risk for
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DoT, and delineate mechanisms associated with risk. This may facilitate more precise prognostication

and treatment of pediatric DCM.
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Pediatric dilated cardiomyopathy (DCM) continues to parameters and patterns in DCM patients overall, we analyzed a
carry high morbidity, heart-transplantation and death.1,2

Therefore, accurate prognostication is important to guide

clinical management. Echocardiography is commonly used

in pediatric DCM management, as left ventricular (LV)

remodeling, systolic, and diastolic function have been asso-

ciated with the risk for DoT.3-6

It is difficult for the clinician to incorporate multiple

parameters into a cohesive prognostic derivation, especially

in children.7 Moreover, useful information, such as patterns

of segmental strain or blood-flow Doppler over the whole

cardiac-cycle, are currently not quantified or integrated into

assessment and prognostication. It is even more challenging

to integrate these with clinical information to improve prog-

nostication. Therefore, addressing this gap could have

important clinical value.

Machine-learning (ML) can integrate and analyze large

amounts of data. Specifically, similarity-based unsupervised

ML allows for comparison of individuals, based on complex

and heterogeneous data, including clinical, imaging parameters

and complex imaging patterns over the cardiac-cycle duration.

ML has been used in several settings and linked to prognosis.8

However, never applied to pediatric DCM to improve and

enrich risk-stratification for transplant-free survival.

We hypothesized that unsupervised ML, combining

echocardiographic parameters, including complex patterns

not traditionally analyzed, with clinical information, can

help in understanding and predicting DoT. Using ML, we

aimed to investigate the relationship of regional LV

mechanics, global LV systolic and diastolic function, com-

bined with clinical characteristics and heart failure medical

treatment, to the outcomes of DoT in children with DCM.

Material and methods

Data from children, 0 to 18 years of age, diagnosed with idiopathic,

familial or genetic DCM, presenting to our institution between 6/

2004 (when digital echocardiography started) and 2016, were retro-

spectively analyzed. The study was approved by the institutional

research ethics board with waiver of informed consent. We previ-

ously studied LV mechanics in this population.9 Here, we present a

more comprehensive and ML-based analysis of this cohort.

Inclusion criteria were a LV end-diastolic dimension (LVEDD)

z-score>2 using institutional z-scores and a LV ejection fraction

(EF) < 50%. Exclusion criteria included anatomic heart disease,

pacing, mitral surgery, or LV noncompaction. The time of presenta-

tion (the initial time point) was considered as the first functional

echocardiogram performed at presentation to our center. Follow-up

duration was until death or heart transplant or study end in patients

with transplant free-survival. Death could have been in or out of

hospital. Transplant always occurred in hospital, at our center.

As an internal validation of the ML algorithm (i.e. to identify

healthy patients as a separate cluster) and give context for the echo
les (emorac17@gmail.com) en National Librar
ivamente. No se permiten otros usos sin autori
nonmatched control cohort of healthy volunteers who had normal

medical history, physical examination, and echocardiogram.

Echocardiography was performed on General Electric (GE,

Wauwatosa, Wisconsin) Vivid7 or E9 systems, with 5-12 MHz

transducers according to patient size. To link between cardiac

functional parameters, early in the clinical course, and outcomes,

and as not to potentially bias associations by using an “end-stage”

echocardiogram, the first study performed on the patient on a Gen-

eral Electric system was used for analysis. This was commonly

the first echocardiogram obtained at the initial clinical assessment.
Clinical variables

Obtained from the medical record, included age, sex, weight, body

surface area (BSA), heart-failure medications (diuretics, digoxin,

beta-blockers, calcium-channel blockers, angiotensin converting

enzyme inhibitors, and angiotensin receptor blockers) and 12-lead

electrocardiogram (ECG) QRS duration.
Echocardiographic measurements included

Para-sternal short-axis LVEDD z-score, biplane modified

Simpson’s EF, aortic, mitral and pulmonary vein (PV) pulsed-

wave (PW) Doppler and LV longitudinal strain from 3 septal and

3 lateral-wall segments obtained from the apical 4-chamber view.
Data processing

The operator extracting the digital traces from the images, and the

operator entering the data into the ML algorithm were blinded to

patient outcomes. The input for ML consisted of longitudinal strain

and blood-pool velocities from the entire cardiac-cycle together with

age and BSA. LV inflow and outflow and PV velocity images were

manually segmented using a cloud-based platform.10 A single car-

diac-cycle was manually selected by indicating 2-consecutive onsets

of the ECG QRS-complex. Then, landmarks on the velocity enve-

lope were manually marked and interpolated using piecewise cubic

splines to reconstitute the entire velocity trace. Valve opening and

closing were defined for LV inflow and outflow traces, and S-wave

onset for PV traces. Segmental LV longitudinal strain curves were

derived from the 4-chamber apical view (Echopac, GE) and the val-

ues, over the whole cardiac-cycle, exported as text files. Strain and

velocity profiles were then processed in MATLAB (R2020b, The

MathWorks Inc., Natick, MA, 2020) as follows.
Temporal normalization

To allow quantitative inter-subject comparisons between traces with

different heart-rates and timing of cardiac-phases, velocity profiles

were temporally aligned, using valve opening and closure and onset

of PV S-wave as temporal events, thereby ensuring alignment of

isovolumetric contraction, systole, isovolumetric relaxation and
y of Health and Social Security de ClinicalKey.es por Elsevier en abril 07, 
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diastole.11A detailed description of the temporal normalization pro-

cedure can be found in the Supplementary Information.12

As temporal normalization may cause loss of time-related events

associated with cardiac abnormalities, timing parameters used for

alignment, including valve opening and closure, PV S-wave onset

and heart-rate, were also considered in the learning. The combina-

tion of echocardiographic descriptors (regional strain and flow traces

over the entire cardiac-cycle and temporal information) as well as

age and BSA, yielded a total of 1015 data-points for each patient

and defined the high-dimensional input for ML (Figure 1).

ML analysis

Unsupervised multiple kernel learning (MKL), a ML algorithm

previously validated and extensively tested to analyze diverse

echocardiographic data,8,11,13 was used to quantify similarity

between subjects, reduce data dimensionality and obtain a low-

dimensional, easily interpretable, output space.11 Finally, once

positioned in the low-dimensional space, subjects were clustered

using K-means (Figure 1) to identify phenotypically distinct

groups of patients. A detailed description of the ML analysis can

be found in the Supplementary Information.8,11,13,14

Statistical analysis

Continuous variables were expressed as mean § standard devia-

tion or median (25th-75th percentile) based on a normal distribu-

tion by Kolmogorov-Smirnov testing. Qualitative variables were

expressed as a number and percentage. Differences between

groups were analyzed for statistical significance using analysis

of variance (ANOVA) for normally distributed variables and

Kruskal-Wallis for non-normally distributed variables. A p value

< 0.05 indicated statistical significance.

Results

Clinical characteristics

Forty-seven DCM (53% male; age 4.09 § 5.5 years) and 25

healthy (44% male; age 8.23 § 6.02 years) children were
Figure 1 Schematic representation of the pipeline for data processi

dimension; HR, heart rate; LV, left ventricle.

Descargado para Eilyn Mora Corrales (emorac17@gmail.com) en National Library
2022. Para uso personal exclusivamente. No se permiten otros usos sin autoriz
analyzed. Clinical characteristics of DCM transplant-free

survivors vs nonsurvivors are shown in Table 1. Half the

DCM cohort experienced DoT. Nonsurvivors had more

diuretic and mechanical support use vs. survivors (Table 1).

Exploration of the low-dimensional output space

The MKL algorithm positioned DCM and healthy subjects in

an output space based on similarity of echo data, along the

duration of the cardiac-cycle, combined with age and BSA.

Figures 2 & 3 show the resulting distribution (first 3 dimen-

sions) of the individuals and how flow and strain patterns

vary within the space. For ease of interpretation, aortic and

mitral flows were combined to one “LV flow” trace, includ-

ing the isovolumic phases. The left panels show individual

positioning, with those that died or were transplanted indi-

cated in red and clearly showing different positioning in the

space, indicating that flows and strains are distinctly differ-

ent. Examining the output space from above (dimension 1 vs

2; left panels Figures 2A and 3A, second from top), and

investigating changes in dimension 1, patients located at the

left-most region showed a normal pattern of LV and PV

Doppler velocities (Figure 2A, brown traces) and strain

(Figure 3A, brown traces). In comparison, patients located at

the right-most region showed abnormal LV patterns consist-

ing of: prolonged isovolumic contraction time (IVCT);

reduced and late peaking aortic flow; prolonged isovolumet-

ric relaxation (IVRT); decreased E and increased A; and

mitral E-A fusion. PV flow showed later onset; a reduced S

and D-waves; and increased A-wave reversal (AR)

(Figure 2A, turquois traces). Similarly, deformation was

severely reduced in all segments, most prominently in mid

and base (Figure 3A, turquois traces). Dimension 2

(Figures 2B and 3B) shows predominantly timing differences

in LV flow and reduced late S-wave PV velocities towards

negative values (Figure 2B, brown traces). Deformation was

overall reduced in all segments for negative coordinates in

dimension 2 (Figure 3B, brown traces), with likely presence
ng and machine-learning analysis. BSA, Body surface area; Dim,
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Table 1 Clinical and Classical Echo Characteristics of Transplant-Free Survival vs Death or Transplant Cohorts

Transplant-free survival (N = 23) Death or transplant (N = 24) p value

Female sex 10 (43.48%) 12 (50%) 0.6542
Age (years) 0.5 (0.16-3.86) 0.61 (0.28-10.9) 0.3382
Weight (Kg) 7 (4.95-15.48) 7.45 (5.85-36.5) 0.4958
BSA (m2) 0.36 (0.29-0.67) 0.38 (0.32-1.2) 0.4496
QRS duration (ms) 80.26 § 23.37 79 § 21.3 0.8475
LVEF 26.65 § 8.13 19.67 § 7.78 0.0043
LVEDD z-score 6.59 § 2.71 8.43 § 3.97 0.0714
GLS (%) -6.88 § 3.75 -5.96 § 3.07 0.3593
Medications
Diuretics 13 (56.52%) 22 (91.67%) 0.0057
ACE-I 12 (52.17%) 17 (70.83%) 0.1884
B-Blockers 11 (47.83%) 11 (45.83%) 0.8911
MRA 6 (26.09%) 4 (16.67%) 0.4302
Digoxin 2 (8.7%) 1 (4.17%) 0.5255
Inotropes 2 (8.7%) 7 (29.17%) 0.0746
Antiarrhythmic 2 (8.7%) 3 (12.5%) 0.6724

ACE-I, Angiotensin converting enzyme inhibitors; BSA, body surface area; GLS, global longitudinal strain; LVEDD, left ventricular end-diastolic dimen-

sion; LVEF, left ventricular ejection fraction; MRA, mineralocorticoid inhibitors.
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of post-systolic deformation. Examining the space from the

left (dimension 1 vs 3; left panels Figures 2C and 3C, bot-

tom), and investigating changes in dimension 3, IVCT was

prolonged with late peaking aortic flows. Patients located at

the bottom-most region had short IVRT, high E-velocities

with fast deceleration and low A-velocities, while at the

same time PV flow showed reduced S and increased D-

waves velocities together with a delayed and prolonged AR-

wave, of much longer duration than the mitral A-wave

(Figure 2C, brown traces). At the same time, deformation

was only mildly reduced overall, without regional changes

(Figure 3C, brown traces). In comparison, patients located at

the top-most region showed (beyond a long IVCT and late

peaking aortic flow) a long IVRT, reduced E with increased

A and mitral E-A fusion (Figure 2C, turquois traces) and

reduced basal strain with apical sparing (Figure 3C, turquois

traces).

Unsupervised clustering

Clustering on the 7 first dimensions of the low-dimensional

space resulted in 5-clusters with significantly different pro-

portions of DoT (Table S1). These were clinically relevant

in relation to conventional echo parameters that were not

used for learning. All controls localized in cluster-1 and 2,

while all, but one, DCM subjects localized in clusters-3, 4

and 5. The clinical characteristics and the corresponding

representative LV velocity and strain traces, are shown for

each cluster in Figure 4.

The clusters containing the controls (Figure 4, dark and

light green) showed normally shaped flows and strain traces

and differentiated predominantly in age (with cluster-1 con-

taining the youngest and cluster-2 containing the oldest

healthy subjects) and age-related heart-rate (higher in youn-

gest—Figure 4E). As seen in Figure 4A, one DCM patient

who experienced transplant was classified with healthy
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subjects. This individual is located near another isolated

individual with the same poor outcome but classified in

cluster-5. For this individual, the time between the echocar-

diographic exam and outcome was much larger than aver-

age (1216 vs 180.5 days).

Clusters 3 to 5 only contained DCM patients. When

comparing the information used during learning, the fol-

lowing observations can be made regarding blood-flow

velocities (Figure 4C,D):

� All DCM clusters show prolonged IVCT.
� Clusters 3 and 4 show a prolonged ejection time with late

peaking aortic flow, while this is less prominent in Cluster-5.
� Clusters 3 and 4 show prolonged IVRT with E-A fusion

in cluster-4, while cluster-5 shows a much shorter IVRT

with rapid and short E.
� Examining PV flow, all DCM clusters have a decreased

S-wave, most prominent in cluster-5, which also shows a

higher D compared to S-wave. All 3-clusters have

increased AR-wave amplitude with cluster-3 and (even

more prominently in) cluster-5 showing marked pro-

longation of PV AR-wave as compared to the mitral A-

wave (quantified in Figure 4F).

LV strains showed the following characteristics for the 3

DCM clusters (Figure 4G):

� Globally, all segments show lower deformation in all

DCM patients.
� Cluster-3 predominantly shows decreased strain in the

basal-mid septum, with post-systolic deformation in

these regions.
� Cluster-4 shows severely reduced basal strain with some

apical sparing.
� Cluster-5 shows overall reduced strain with some apical

sparing.
y of Health and Social Security de ClinicalKey.es por Elsevier en abril 07, 
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Figure 2 Exploration of the low-dimensional output space. (Left) The left panels of the figures show the positioning of the individuals in

the (3 first dimensions) of the output space, with those who dies or were transplanted in red, and the point-of-view (green arrow) for the 2-

dimensional representation of the output space. (Right) Exploration of the (A) first, (B) second, and (C) third dimensions of LV echo data

variability. Aortic, mitral and PV velocity curves corresponding to the regions marked by the 3 black dots, corresponding to the minimum

(brown), middle (black) and maximum (turquoise) positions along each dimension were plotted. Aortic and mitral velocities (ignoring any

regurgitation that might be present) are combined to one “LV flow” trace, including the isovolumic phases.
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When investigating the clusters for outcome and clinical

variables not used for the learning, the following observa-

tions can be made (Figure 4B, Table S1):

The cluster with the highest proportion of death or

transplant (cluster-5) comprised the oldest individuals
Descargado para Eilyn Mora Corrales (emorac17@gmail.com) en National Library
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treated most intensively with heart-failure medications.

They had the largest left atria (LA) volumes and were

further characterized by reduced deformation, prolonged

IVCT, reduced, shortened and late peaking outflow, indi-

cating systolic dysfunction. Additionally, the short
 of Health and Social Security de ClinicalKey.es por Elsevier en abril 07, 
ación. Copyright ©2022. Elsevier Inc. Todos los derechos reservados.



Figure 3 Exploration of the low-dimensional output space. (Left) The left panels of the figures show the positioning of the individuals in

the (3 first dimensions) of the output space, with those who dies or were transplanted in red, and the point-of-view (green arrow) for the 2-

dimensional representation of the output space. (Right) Exploration of the (A) first, (B) second, and (C) third dimensions of LV deformation

data variability. LV deformation curves corresponding to the regions marked by the 3 black dots corresponding to the minimum (brown),

middle (black) and maximum (turquoise) positions along each dimension were plotted.

Garcia-Canadilla et al. Machine-learning−based exploration to identify remodeling patterns associated 521
IVRT, preserved E-wave with decreased A-wave, lowest

PV S-wave velocities (Figure 4D), largest time-differ-

ence between end of AR-wave and end of mitral A-wave

(Figure 4F) and largest LA volume (Table S1), indicate
Descargado para Eilyn Mora Corrales (emorac17@gmail.com) en National Librar
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important diastolic dysfunction. These findings suggest

globally failing hearts.

The cluster with the second highest proportion of death

or transplant (cluster-4) compromised young DCM subjects
y of Health and Social Security de ClinicalKey.es por Elsevier en abril 07, 
zación. Copyright ©2022. Elsevier Inc. Todos los derechos reservados.



Figure 4 The “fingerprints” of clinical characteristics as well as the corresponding representative LV velocity and longitudinal strain

traces. (A) Cluster distribution in the first 3 dimensions of the low-dimensional output space. (B) Clinical and conventional echo characteris-

tics of each cluster. Representative (C) LV velocity traces, (D) pulmonary vein velocity traces, (E) heart rate, (F) time difference (in per-

centage) between the end of the PV AR and mitral A-waves, and (G) LV deformation traces of each cluster.
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with the lowest LVEF and GLS and highest LVEDD z-

score, but with normal LA size (Table S1). This group also

had the most reduced and delayed peak aortic outflow

velocity, and most reduced basal and mid deformation

(Figure 4G), indicating severe systolic dysfunction. They

had the shortest filling time, highest heart-rate with mitral

E-A fusion, but longest IVRT, with very little prolongation

of the PV AR-wave as compared to mitral A-wave duration

and normal LA size (Table S1). These findings suggest

milder diastolic dysfunction with low filling-pressures.

Finally, cluster-3 comprised young DCM subjects with

the lowest risk of death or transplant, moderately reduced

LVEF and GLS and moderately enlarged LVs and LAs.

They had prolonged IVCT, but high and normal peaking

aortic outflow, decreased deformation in basal segments

(with marked septal post-systolic shortening—Figure 4G),

and near-normal apical strains, all suggestive of moderate

systolic dysfunction. They showed only slightly increased

IVRT, moderate mitral E-A fusion, but overall the shortest

filling time (Figure 4C), and low PV S-wave velocities

(Figure 4D) and a large difference between the PV AR-

wave and mitral A-wave durations (Figure 4F) and enlarged

LA (Table S1), consistent with predominant LV diastolic

dysfunction.
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Figure 5 summarizes the main clinical characteristics,

echocardiographic patterns and outcomes of each cluster.

Discussion

DCM carries high morbidity and mortality in children with

little improvement in survival.1 In this proof-of-concept

study we investigated the usefulness of combining echocar-

diographic parameters of regional mechanics, diastolic

parameters and LV outflow Doppler characteristics (as

reflecting LV pump function), over the cardiac cycle, with

clinical characteristics, to understand the spectrum of

remodeling in pediatric DCM. The results show that by

combining these parameters, ML can cluster patients into

distinct groups with different proportions of DoT. Our

results suggest that this approach may further our under-

standing of underlying LV remodeling process, and which

parameters are associated with more DoT in pediatric

DCM. To our knowledge, this is the first time this approach

has been published in pediatric DCM.

Many of the echo and clinical parameters entered into

the ML model, are known to be associated with transplant-

free survival or the risk for disease progression but have not

been integrated.3-5,15,16 As opposed to assessing the
 of Health and Social Security de ClinicalKey.es por Elsevier en abril 07, 
ación. Copyright ©2022. Elsevier Inc. Todos los derechos reservados.



Figure 5 Typical clinical characteristics, features of left ventricular echo and deformation patterns and outcome rates of the 5 phe-

nogroups. The green circles represent the 2 clusters that contain all the healthy subjects, while yellow, orange, and red circles represent the

3 clusters containing all the DCM subjects but one. DCM, dilated cardiomyopathy; DoT, death or transplant; EDD, end-diastolic diameter;

EF, ejection time; FT, filling time; GLS, global longitudinal strain; HR, heart rate; ICRT, isovolumetric relaxation time; IVCT, isovolumet-

ric contraction time; MCS, mechanical support; PSS, postsystolic shortening.
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predictive value of individual parameters, our approach

positions individuals with regards to each other based on

similarity in cardiac-cycle wide deformation and (aortic/

mitral/PV) flow patterns. This incorporates routine parame-

ters as well as their unique characteristics over the duration

of the cardiac-cycle that are not usually analyzed. More-

over, it integrates aspects of ejection and filling. This

approach approximates what physicians strive for: to syn-

thesize all available information into a comprehensive

assessment. However, it is difficult, if not impossible, for

the human brain to incorporate and synthesize multiple data

simultaneously in an unbiased manner.

From the positioning of individuals in relation to each

other, several observations can be made on pathophysiolog-

ical changes in the failing pediatric heart. Given that we

analyze cycle-wide flows, we can observe variability in aor-

tic outflow, where a longer IVCT and a decreased and

delayed outflow velocity was seen in high-risk clusters. In

the normal LV, when contractility and loading are balanced,

aortic outflow peaks around one third of the ejection period;

and then gradually decreases, corresponding to decreased

force development. When loading is disproportionally

increased or contractility impaired,17 force-development

prolongs, resulting in late peaking outflow velocities with a

rounded rather than triangular profile. Similarly, mitral

Doppler patterns showed well-known changes associated

with filling abnormalities, such as alterations in IVRT, E-

wave peak and deceleration, A-wave contribution and
Descargado para Eilyn Mora Corrales (emorac17@gmail.com) en National Librar
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heart-rate-related fusion, over and above absolute peak E

and A values. It is notable, however, that although the A-

wave becomes more dominant when IVRT lengthens, and

decreases again in patients with worse prognosis, where

IVRT is shorter and deceleration time tends to be shorter,

this is far less impressive compared to patterns observed

during pseudonormalization or restriction in adults, consis-

tent with our observations that pediatric diastolic changes

do not follow adult patterns.7 The timing and duration of

ejection and filling are clearly important, consistent with

the systolic:diastolic duration ratio being associated with

DoT in pediatric DCM.18

PV Doppler analysis also showed interesting observa-

tions. Although there is a tendency towards lower S-waves

and increased D-waves with worse outcome, these changes

are less marked compared to adult heart-failure.19,20 In con-

trast, PV AR-wave duration and its relation to mitral A-

wave duration, are relevant in relation to outcome. Given

that PV AR-wave prolongation appears concomitantly with

shortened IVRT, this suggests elevated atrial pressures.20,21

Our findings suggest that a comprehensive assessment of

Doppler traces and their patterns (including mitral, PV and

LV outflow) is important, over and above singular measure-

ments of peak velocities.7

In addition to flow patterns, we incorporated regional

deformation along the full cardiac cycle. We previously

showed that timing of peak strain,22 its segmental disper-

sion, as well as the “global” pattern of strain over the LV,23
y of Health and Social Security de ClinicalKey.es por Elsevier en abril 07, 
zación. Copyright ©2022. Elsevier Inc. Todos los derechos reservados.



524 The Journal of Heart and Lung Transplantation, Vol 41, No 4, April 2022
are associated with function and possibly clinical outcomes

in pediatric DCM.9,24 Here, we additionally show that dif-

ferent patterns occur, some of which associated with higher

risk. Whereas a global and severe decrease in deformation

in all segments is associated with worse outcome, we

observe that changes in basal segments are specifically

important and may be more sensitive compared to GLS.

As opposed to the classical approach where single varia-

bles are used for classifying findings, our proposed pheno-

grouping identified different remodeling profiles associated

with differing proportions of DoT. The group with the high-

est proportion of DoT (cluster-5) were characterized by

findings that suggest globally failing hearts, explaining their

high risk.

Conversely, the group with the second highest propor-

tion of DoT (cluster-4) was characterized by severe systolic

but relatively mild diastolic dysfunction. Interestingly,

Cluster 3 comprised of young DCM subjects with lowest

risk of DoT while they had findings suggestive of predomi-

nant LV diastolic dysfunction with only moderate systolic

dysfunction.

Previous literature suggests that the youngest patient

populations with DCM have the worst outcomes with

another increase during adolescence. However, some large

registries have suggested that older age is associated with

worse outcome.2 This apparent controversy clearly indi-

cates that age itself is likely not the determining factor, as

can also be seen from our data (Table 1), showing that the

age was similar between DCM patients with vs without an

outcome. While our sample is too small vs much larger reg-

istries to determine that younger children have similar or

better outcomes compared to older children, our novel

approach might provide more insight into this controversy

by showing that it is the phenotype, potentially independent

of age, that would determine outcome. We see on both age

groups that those with more systolic dysfunction were posi-

tioned in clusters that had more risk of adverse outcome

while predominantly diastolic dysfunction seems better

controllable. To better illustrate the age distribution in our

population and clusters, we have constructed histograms of

the patient’s age in the different clusters and have added

this to the supplementary material (Supplementary Figure

S1). The histogram clearly shows 2 age groups, a very

young and a more adolescent group.

Our results suggest that integrating cardiac mechanics

and hemodynamics surpasses the potential of “traditional”

statistics on a set of individual measurements. Our results

may further provide new insights into the pathophysiology

of pediatric heart-failure including (predominant) diastolic

dysfunction.

One may question whether combining “raw information”

from which well-tested parameters are extracted is needed.

Based on current results, we believe it is. For example,

although it is widely accepted that diastolic dysfunction is

associated with clinical outcomes, this has been difficult to

demonstrate systematically in pediatric DCM.7 Here we

show that more subtle changes of abnormal relaxation are

present combined with signs of elevated filling-pressures in

those at highest risk.
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The use of artificial intelligence is evolving, predomi-

nantly in adult studies, using “big-data” and unsupervised

ML approaches to classify phenotypes who may be treated

similarly, with a predictable response.25 Unbiased or unsu-

pervised hierarchical clustering has been used to identify

new phenotypes in cohorts of adults with heart failure.26,27

Our approach could foreseeably be utilized in the same way

in the phenotypically heterogeneous pediatric population.

Our results will need to be validated in larger studies.28 In

large adult studies, clusters could be defined by severity of

ventricular function, or etiology, in relation to RNA-

sequenced distinct gene expression profiles.25 Our approach

may address more directly the pathophysiology and perhaps

mechanism of the expressed phenotype, which may also be

useful to guide treatment. While our study cannot answer

this question, the lack of effective medical treatment in

pediatric DCM makes this very relevant. Cluster-3 was

characterized by young patients, all of whom survived with-

out transplant, with a high proportion of early medical treat-

ment. In contrast, cluster-5 was characterized by older

patients with a very high rate of DoT, and frequent medica-

tion. This questions use of similar medications in different

age groups and disease characteristics. While ML pheno-

grouping may be used in the future to predict response to

medication and hence guide the choice of medications, the

current study, due to its retrospective design and the impact

of the clinician in determining the medical treatment, can-

not determine changes in patient features and/or prognosis

based on medical therapy. This would necessitate prospec-

tive studies.

While our proposed approach shows potential for assess-

ing prognosis, and clearly shows the underlying etiologies

associated with the patient’s clinical presentation and thus

contributing to a better understanding, prospective as well

as serial validation studies are needed. If confirmed by such

studies, one may envision ML algorithms embedded in

echocardiography or medical record platforms. That,

instead of only list image-based measurements, integrate

hemodynamic Doppler, functional and strain data and clini-

cal characteristics to provide an “online” assessment tool

that the clinician may use to phenotype patients in real time

for risk assessment and to improve prognostication. Ulti-

mately, these comprehensive and integrated tools may also

be used to predict the chance of response to medications; or

use lack of a response as an additional predictive parameter.

This may substantially refine and improve the medical ther-

apeutic approaches, need for transplantation and/or poten-

tially the timing of mechanical circulatory support

placement.
Limitations

This is a relatively small cohort from a single center. There

are other multiple relevant parameters that were not

included during the learning, for example biomarkers and

genotype. One of the main limitations is the lack of a vali-

dation cohort. When using ML approaches for classifica-

tion, independent validation, using internal cross validation,
 of Health and Social Security de ClinicalKey.es por Elsevier en abril 07, 
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as well as external validation with other cohorts, is impor-

tant to avoid overfitting and to provide a reliable predictor.

This initial study serves as proof of principle, while at the

same time providing interpretable insights into the patho-

physiological changes in cardiac mechanics and hemody-

namics in pediatric DCM. The unsupervised pheno-

grouping avoids bias based on outcome of diagnostic labels.

However, comprehensive validation is needed.
Conclusion

In conclusion, this exploratory study shows the potential of

(unsupervised) ML to integrate comprehensive echo and

clinical data for phenotyping and risk stratification in pedi-

atric DCM. Our initial results seem to identify subgroups

with varying degrees of systolic and diastolic dysfunction,

associated with variable risks, which can form the basis to

investigate larger samples, including comprehensive valida-

tion in separate cohorts.
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