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Abstract

SARS-CoV2 infection is responsible for a complex clinical syndrome, named Coronavirus Disease 2019 (COVID-19),
whose main consequences are severe pneumonia and acute respiratory distress syndrome. Occurrence of acute and subacute
neurological manifestations (encephalitis, stroke, headache, seizures, Guillain—Barreé syndrome) is increasingly reported in
patients with COVID-19. Moreover, SARS-CoV2 immunopathology and tissue colonization in the gut and the central nerv-
ous system, and the systemic inflammatory response during COVID-19 may potentially trigger chronic autoimmune and
neurodegenerative disorders. Specifically, Parkinson’s disease, multiple sclerosis and narcolepsy present several pathogenic
mechanisms that can be hypothetically initiated by SARS-CoV?2 infection in susceptible individuals. In this short narrative
review, we summarize the clinical evidence supporting the rationale for investigating SARS-CoV?2 infection as risk factor
for these neurological disorders, and suggest the opportunity to perform in the future SARS-CoV2 serology when diagnos-
ing these disorders.
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Introduction

In December 2019, a novel coronavirus, named severe
acute respiratory syndrome-coronavirus 2 (SARS-CoV2),
emerged from China and spread worldwide as pandemic.
SARS-CoV2 infection is responsible for a heterogeneous
clinical syndrome, leading to severe pneumonia and acute
respiratory distress syndrome (ARDS), titled coronavirus
disease 2019 (COVID-19). The occurrence of neurologi-
cal manifestations, including encephalitis, stroke, headache,
seizures, Guillain—Barre syndrome, is increasingly reported
in patients with COVID-19 [1-4]. Although these neurologi-
cal manifestations of COVID-19 suggest a possibly acute or
subacute neuropathogenicity of the virus, the risk of long-

Tommaso Schirinzi, Doriana Landi and Claudio Liguori have
equally contributed to manuscript conceptualization and drafting,
and equally serve as corresponding authors.

< Tommaso Schirinzi
t.schirinzi@yahoo.com

< Doriana Landi
doriana.landi @ gmail.com

P4 Claudio Liguori
dott.claudioliguori @yahoo.it

Neurology Unit, University Hospital of Rome Tor Vergata,
Viale Oxford 81, 00133 Rome, Italy

Multiple Sclerosis Clinical and Research Unit, University
Hospital of Rome Tor Vergata, Viale Oxford 81,
00133 Rome, Italy

Sleep Medicine Centre, Department of Systems Medicine,
University of Rome Tor Vergata, Viale Oxford, 81,
00133 Rome, Italy

Neurology Unit, University Hospital of Rome Tor Vergata,
Viale Oxford, 81, 00133 Rome, Italy

term neurological sequelae in patients affected by SARS-
CoV2 is not understood and currently debated [5, 6].

Available data on COVID-19 currently disclosed that
SARS-CoV?2 can induce, directly or indirectly, a number of
clinical manifestations and immune—inflammatory events,
including viral-host interactions, that might shape patho-
genic mechanisms underlying common chronic neuroinflam-
matory and neurodegenerative disorders [2, 5, 6].
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In this review, we will specifically discuss the biological
events possibly initiated by SARS-CoV2 infection poten-
tially overlapping with etiological mechanisms featuring
Parkinson’s disease (PD), multiple sclerosis (MS), or nar-
colepsy. Building on these evidences, we will highlight the
need to monitor patients affected by COVID-19 who can
develop PD, MS, or narcolepsy as long-term neurological
consequences of the infection.

Parkinson’s disease

PD is the second most common neurodegenerative disorder,
characterized by progressive motor and non-motor distur-
bances, due to the loss of dopaminergic cells in the sub-
stantia nigra pars compacta (SNpc) and the accumulation of
a-synuclein (a-syn)-positive Lewy bodies [7-9]. The rela-
tionship between viral infections and PD has its roots in the
early twentieth century, when a number of post-encephalitic
parkinsonism were observed following an influenza out-
break. Aside from this historical event, infectious diseases,
including viral infections, have been demonstrated increas-
ing the risk for PD by 20% [10]. The mechanisms underly-
ing this association may imply a direct neuronal injury due
to the central nervous system (CNS) invasion by viruses
and subsequent loss of dopaminergic cells into the SNpc.
Indeed, it has been recently demonstrated in Rag knockout
mice that HIN1 Influenza-A virus infection inhibits protein
degradation at autophagosome-lysosome system level and
precipitates a-syn accumulation [11]. Further experimental
evidence showed that Influenza-A virus disrupts mitochon-
drial activity and increase oxidative stress [12, 13], whereas
hepatitis C virus impairs dopaminergic transmission and
affects the blood—brain barrier (BBB) integrity [10]. There-
fore, viral infections may intervene in cellular pathways
critical for PD pathogenesis, probably contributing to the
initiation of the disease [8, 9, 14-17].

Although the CNS colonization by SARS-CoV2 has
been proven, the consequences on neurons at a molecular
level have been only hypothesized [5, 6]. However, it is
interesting to note that the virus may affect brain areas
particularly involved in early phases of PD neurodegenera-
tion. Many patients with COVID-19 indeed complained
of anosmia and ageusia [18], which are two classical pro-
dromal features of PD [19]. Actually, SARS-CoV2 might
invade the brain through the olfactory tracts and spread
towards the piriform and infralimbic cortex, the basal gan-
glia and the brainstem [18]. Neuropathological evidence
suggests that, in PD, Lewy body accumulation is primarily
localized in the olfactory pathway, and then propagates
to other brain structures following olfactory system con-
nections causing neuronal degeneration [19, 20]. This
potential overlap between the SARS-CoV?2 propagation
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and the spreading of PD neuropathology is particularly
alarming if we consider that some patients with COVID-19
do not recover (or partially recover) smell sense [18], thus,
indicating a possible neuronal injury that in turn might
trigger the synucleinopathy cascade [21]. Aside from the
direct invasion of CNS, SARS-CoV2 might increase the
risk for PD because of the induction of a systemic inflam-
matory state [22]. Cytokine production is fundamental
in the immunological response to viruses. However, an
excessive and dysregulated release of interferons (IFNs),
interleukin (IL)-1p, IL-6, tumour necrosis factor (TNF)
and chemokines (C—C motif chemokine ligand, CCL-
2, CCL-3, and CCL-5), shaping the so-called cytokine
storm, can be deleterious, causing an immune-mediated
attack to human organs [23]. COVID-19 patients present
a systemic inflammatory state, as demonstrated by the
significant increase of C-reactive protein (CRP), IL-6,
IL-8, IL-10, IL-2R, and ferritin blood levels [24]. Similar
profile of peripheral inflammation is notably observed in
PD patients, who exhibit higher blood levels of CRP and
proinflammatory cytokines (IL-6, TNF, IL-1p and IL-2)
[25, 26], directly correlated with clinical severity [27].
The inflammatory activation due to COVID-19 may thus
disrupt the systemic homeostasis at the CNS level, where
it could trigger and feed initial steps of synucleinopathy,
favouring PD onset, as compelling experimental evidence
suggests [22, 28].

COVID-19 is also responsible for gastrointestinal
symptoms [29], and SARS-CoV2 RNA has been tracked
in the faeces of infected patients indicating an intestinal
localization of the virus. A recent study demonstrated
that enterocytes represent major target cells of SARS-
CoV2 reacting to the infection with a strong inflamma-
tory response [30]. These findings might further highlight
the role of COVID-19 as a potential risk factor for PD. In
fact, an experimental intestinal infection was able to turn
PINK1 asymptomatic mouse model into a fully penetrant
model, with levodopa-responsive motor symptoms, prob-
ably trough an immune-mediated multisystem mechanism
[31]. Moreover, SARS-CoV?2 intestinal infection may alter
gut microbiota and gut physiology overall [32], influenc-
ing all factors providing the “peripheral” contribute to PD
pathogenesis and progression [33].

Finally, it should be also considered psychiatric comor-
bidity of COVID-19. Actually, patients can develop
depression, anxiety and fatigue, which may have both
psychological and organic causes [34]. Regardless of the
cause, mood disorders are associated with neuroinflam-
mation and often exert detrimental effects on CNS, con-
tributing to neurodegeneration [35]. Hence, COVID-19
definitely represents a stressful event that may have a role
in triggering PD [36].



Journal of Neurology (2021) 268:1171-1178

1173

Multiple sclerosis

MS is a chronic immune-mediated disease of the CNS
whose pathological hallmark is focal demyelination associ-
ated with various degrees of neurodegeneration [37]. Com-
plex immunological dysfunction—involving peripheral T
and B lymphocytes and resident CNS immune cells—rep-
resents the immunological substrate for MS development
and progression [38]. The intermittent aberrant activa-
tion of self-reacting immune cell subsets results in their
transmigration across the BBB into the CNS, where they
induce demyelinating and, ultimately, neuronal damage
manifesting as clinical relapse and disability accumula-
tion. The aetiology of the disease, as well as its periodic
relapses, is not established yet, but environmental trig-
gers acting on susceptible individuals are implicated. For
over a century, since Pierre Marie initial intuition in 1884,
MS was believed to be caused by infectious agents and
many viruses, including coronavirus, have been proposed
as potential candidates [39]. Viral infection contributes to
demyelination through several mechanisms such as molec-
ular mimicry, bystander inflammatory damage or direct
oligodendrocyte infection [39]. MS onset may occur long
after acute infection as consistently demonstrated for by
Epstein—Barr virus (EBV) [40]. Infectious mononucleosis
by EBV supervening during the early adulthood, in fact,
is an established risk factor for further MS development
[41-45]; moreover, compelling evidence shows that almost
all subjects with MS have positive serology for EBV. The
“prime/challenging” theory has been proposed to explain
the delay between early infection and MS onset; according
to this assumption, the initial infection, such as by EBV,
would prime autoreactive cells in susceptible individuals
via molecular mimicry and bystander activation, setting up
a fertile-field. Further infection by other microorganism, or
even reactivation of EBV under favouring circumstances,
will activate the preexisting autoreactive cells leading
to inflammatory demyelination [40, 46]. Studies in MS
patients infected by SARS-CoV?2 are ongoing aiming at
identifying the effects of iatrogenic immune modulation/
suppression on the severity of infection [47, 48]. Never-
theless, the effect of the virus on MS-related inflamma-
tory activity has not been investigated yet, but few cases
of acute inflammatory demyelinating disorder have been
already described. It would not be surprising that SARS-
CoV2 might act as “priming” or “challenging” infectious
agent in “primed” individuals. Moreover, in individuals
with MS, autoreactive T cells able to recognize both viral
and myelin antigens have been found [49]. Additionally,
SARS-CoV?2 infection is associated with peripheral lym-
phopenia in more than 80% of patients with COVID-19.
Lymphopenia is sustained by a predominant decrease of

CD3+, CD8+, and CD4 + T cell counts, while B cells
and NK are only mildly affected [50]. Patients infected
by SARS-CoV during the 2002-04 outbreak recovered
normal T lymphocytes count in about 2 months in the
majority of case, and more rarely the recovery took more
than 12 months [51]. Sequestration in the lung, intestine
and other tissues, and senescence and exhaustion of the
anti-viral CD8 response [50, 52], explain this selective
immunodepletion. We can speculate that defective anti-
viral CD8 immunological response may reduce immu-
nosurveillance on other latent pathogens potentially able
to trigger MS or other post-infectious demyelinating dis-
orders, such as Guillain—-Barré syndrome or its variants
[53]. Co-infection with EBYV, in fact, has been observed
in patients affected by COVID-19, mainly in those with
lower CD4/CD8 ratio [54]. Nevertheless, unbalance of
peripheral lymphocyte subsets induced by COVID-19, and
in particular B cell overshooting, may hypothetically rep-
resent an additional risk for MS relapses in patients with
pre-existing diagnosis, as observed in similar immunologi-
cal framework [55]. The “cytokine storm” in response to
the SARS-CoV2 infection may promote a switch toward
a pro-inflammatory status of T cell subsets, such as Th17,
which are implicated in MS pathogenesis [56]

COVID-19 may indeed trigger MS or its clinical mani-
festation also through other mechanisms. In MS, intestinal
dysbiosis and changes in intestinal permeability are increas-
ingly recognized as modulators of neuroinflammatory mech-
anisms through the so-called gut-brain axis [57]. Therefore,
the alteration of the intestinal barrier and microbiota induced
by SARS-CoV2 may enhance autoreactive response (as pre-
viously mentioned).

Finally, it is worth noting that SARS-CoV2 is able to
directly infect the CNS via olfactory pathway or hematog-
enous route using the angiotensin-converting enzyme recep-
tor type 2 (ACE2) expressed in the CNS and in the vascular
endothelium [6].

Coronaviruses, such as mouse hepatitis virus, may
invade neurons and oligodendrocytes, establish a persistent
infection of astrocytes and locally activate and immortal-
ize microglial cells causing brain and spinal demyelination
featuring MS, as observed in animal models and humans
[58-61]. Moreover, strains of human coronavirus have been
found in brain autoptic specimens of patients with MS [62];
additionally, MS patients show higher intrathecal antibody
synthesis against coronaviruses than matched controls [45].

Building on these evidences, MS may result from pre-
vious SARS-CoV2 infection due several mechanisms: (1)
a “challenging” effect of the virus in susceptible subjects
previously exposed to priming pathogens; (2) unbalance of
peripheral lymphocyte subsets and massive cytokine release
producing a pro-inflammatory environment and triggering
autoimmune reactions; (3) induction of post-infectious
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demyelinating events associated with direct CNS invasion
and microglial reaction.

Narcolepsy

Narcolepsy is a rare sleep disorder featured by excessive
daytime sleepiness (EDS) and REM sleep-associated symp-
toms, such as cataplexy (loss of muscle tone triggered by
strong emotions), hypnagogic/hypnopompic hallucinations,
and sleep paralysis. The prevalence of narcolepsy in 2016
was of 44.3 per 100,000 persons [63]. The main increase
in narcolepsy diagnosis was in particular evident following
Influenza-A HINI pandemic in 2009, and was evident in
both patients affected by Influenza-A HIN1 and in patients
vaccinated against this virus with Pandemrix (an adju-
vanted vaccine) [64]. International classification of Sleep
Disorders—3rd Edition classifies narcolepsy into two types,
namely narcolepsy types 1 and 2 (NT1/2) [65]. The main
clinical difference between these two forms of narcolepsy
is the occurrence of cataplexy, which is the result of orexin
(OX) neuron degeneration [65]. The OX system degenera-
tion results in the not detectable levels of OX in the cerebro-
spinal fluid (CSF), consisting of the main diagnostic feature
of NT1 [66]. Conversely, in NT2, the partial degeneration
of OX neurons corresponds to normal CSF OX levels [67].

The main pathogenic causes of narcolepsy have been
exclusively supposed with different levels of evidence since
OX neuron degeneration remains a not-well-explained phe-
nomenon. Several lines of evidence suggest that narcolepsy
arises from the interaction of genetic, environmental and
triggering factors, which leads to an immune-mediated selec-
tive loss or dysfunction of OX neurons in the brain lateral
hypothalamus. Briefly, as summarized by Bassetti and coau-
thors [68], genetic factors (especially HLA-DQB1*06:02
positivity) are a strong predisposition to narcolepsy. Ensu-
ing this genetic susceptibility, environmental exposures to
bacterial and viral infections may alter or trigger the immune
system reaction that in turn may attack the OX neurons.
Several researches have been performed to understand the
cascade of events leading to OX system and involving the
different subsets of immune cells (B cells, T CD4 + and
T CD8 +cells) [69, 70]. Not significant results have been
achieved regarding the detection of specific autoantibodies
produced by B cells [71]; conversely, T cells seem to have
direct and indirect effects on OX neurons. In particular, in
2018, autoreactive CD4 +and CD8+T cells targeting anti-
gens expressed by OX neurons have been documented in
patients with NT1 or NT2 [72]. This research highlighted
the role of T cells in the pathogenesis of narcolepsy; how-
ever, the lack of proliferation of T cell clones in response to
HINI1 influenza vaccine does not permit to achieve a definite
conclusion [72]. Therefore, although widely supposed the
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role of T cells in the pathogenesis of narcolepsy, the chain
of events producing OX neuron degeneration has not been
completely identified. Finally, the increased levels of spe-
cific cytokines (TNF and IL-6 among others) further support
the evidence of an inflammatory and immune response in
patients with narcolepsy since the very early phases of the
disease [73]. The reduction of CSF -amyloid,, levels in
patients with narcolepsy near to disease onset has been also
associated with the brain inflammatory response [74-76].
Moreover, other proofs of the activation of the immune sys-
tem have been documented in patients with NT1, also with
long-lasting disease [77].

The SARS-CoV2 viral outbreak may also present a
unique opportunity to better understand the association
between immune system activation and the development of
autoimmune conditions such as narcolepsy [78]. Consider-
ing the non-haematological routes of infection, SARS-CoV?2
can migrate from the olfactory bulb to hypothalamus and
affect the OX neurons [78]. In keeping with this hypothetical
model of CNS damage, the olfactory bulb may represent a
link between environmental agents (such as SARS-CoV2)
and narcolepsy, in patients with a genetic predisposition
[79]. The olfactory bulb, in fact, provides an efficient port
for neuroinvasion [80]. Neurotropic, but also non-neuro-
tropic, viruses may use this gateway to enter the CNS using
the BBB disruption caused by the activated inflammatory
processes [80]. Moreover, the inflammatory response (in
particular proinflammatory cytokines) can enhance BBB
permeability promoting the transendothelial migration of T
cells (activated against the virus), which can damage the OX
hypothalamic neurons [81]. The documentation of olfactory
dysfunction in patients with narcolepsy can reinforce this
hypothesis and highlight the role of olfactory bulb in the
pathogenic mechanisms of narcolepsy [82].

Taking these hypotheses into account, the main message
of this review to sleep medicine clinicians and researches
is to consider SARS-CoV2 infection as a possibly trigger-
ing event leading to narcolepsy. The previous experience of
Influenza-A HINI1 infection and vaccination should raise
the opportunity to monitor subjects affected with COVID-
19 also after resolution of the infection since the occur-
rence of EDS (in same cases already present during the
infection) may represent a preliminary manifestation of OX
dysfunction.

Conclusion

Both retrospective analysis achieved by reviewing clinical
charts of patients with COVID-19 and prospective observa-
tional studies [2, 83, 84] provided compelling evidence on
the CNS involvement during SARS-CoV?2 infection, which
definitely supports the hypothesis of a neuropathogenic
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Fig.1 SARS-CoV2-induced mechanisms for neuropathogenicity. The scheme represents direct and indirect effects of COVID-19 that overlap
with defined pathogenic mechanisms of common and rare chronic neurological disorders, suggesting its potential role as risk factor

effect of the virus. Early experimental data on SARS-CoV2
and existing literature about other coronaviruses allow sup-
posing several mechanisms of neuroinvasion of the virus,
including the trans-synaptic spread from peripheral nerves,
the BBB passage mediated by ACE2 receptors or abnor-
mal permeability, and the “Trojan horse” strategy due to
the brain entrance of immune cells infected through ACE2
receptors [2, 6].

This brief narrative review summarized the mechanisms
of CNS affection during SARS-CoV2 infection, which
include different pathways and pathogenic cascades, con-
cluding in chronic neuroinflammatory or neurodegenera-
tive processes that typically underlie both common (PD and
MS) or rare (narcolepsy) neurological diseases. In addition
to direct neuronal injury, we also highlighted how SARS-
CoV2 might have a role in the successive development of
these chronic neurological disorders because of the activa-
tion of systemic inflammatory response, favouring a culprit
unbalance in the immune system or affecting other critical
players of neurodegeneration and neuroinflammation, such
as BBB integrity and gut-brain axis (Fig. 1).

Although long-term neuropathogenic effect of SARS-
CoV2 has not yet been proven in experimental settings,
available knowledge on both COVID-19 clinical events and
established pathophysiological dynamics of chronic neuro-
logical disorders lead us to look at SARS-CoV2 infection as
a potential trigger or risk factor for neurological disorders.

In conclusion, prospective neurological follow-up of both
COVID-19 survivors and asymptomatic infected individu-
als, and case—control observational studies are mandatory
to establish the effective long-term neuropathogenicity of
the virus and achieve early diagnosis and timely therapeu-
tic interventions. On the other hand, COVID-19 should
be considered a critical anamnestic cue and serology for

SARS-CoV2 infection can be planned when approaching
patients with neuroinflammatory, neurodegenerative, or
sleep disorders.
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